英文文獻
1.Abbasimehr, H., Shabani, M., & Yousefi, M. (2020) “An optimized model using LSTM network for demand forecasting.”, Computers & industrial engineering, Vol.143, 106435.
2.Balaji, A. J., Ram, D. H., & Nair, B. B. (2018) “Applicability of deep learning models for stock price forecasting an empirical study on BANKEX data.”, Procedia computer science, Vol.143, pp.947-953.
3.Bustos, O., & Pomares-Quimbaya, A. (2020) “Stock market movement forecast: A Systematic review.”, Expert Systems with Applications, Vol.156,113464.
4.Chen, C., Zhang, P., Liu, Y., & Liu, J. (2020) “Financial quantitative investment using convolutional neural network and deep learning technology.”, Neurocomputing, Vol.390, pp.384-390.
5.Chang, P. C., Liu, C. H., Lin, J. L., Fan, C. Y., & Ng, C. S. (2009) “A neural network with a case based dynamic window for stock trading predictio-n.”, Expert Systems with Applications, Vol.36(3), pp.6889-6898.
6.de Oliveira Carosia, A. E., Coelho, G. P., & da Silva, A. E. A. (2021) “Investment Strategies Applied to the Brazilian Stock Market: A Methodology Based on Sentiment Analysis with Deep Learning.”, Expert Systems with Applications, 115470.
7.deAndrés-Galiana, E. J., Bea, G., Fernández-Martínez, J. L., & Saligan, L. N. (2019) “Analysis of defective pathways and drug repositioning in Multiple Sclerosis via machine learning approaches.”, Computers in biology and medicine, Vol.115, 103492.
8.Haq, A. U., Zeb, A., Lei, Z., & Zhang, D. (2021) “Forecasting daily stock tr-end using multi-filter feature selection and deep learning.”, Expert Systems with Applications, Vol.168, 114444.
9.Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018) “NSE stock market prediction using deep-learning models.”, Procedia computer science, Vol.132, pp.1351-1362.
10.Hochreiter, S., & Schmidhuber, J. (1997) “Long short-term memory.”, Neural computation, Vol.9(8), pp.1735-1780.
11.Jiang, M., Liu, J., Zhang, L., & Liu, C. (2020) “An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms.”, Physica A: Statistical Mechanics and its Applications, Vol.541, 122272.
12.Koratamaddi, P., Wadhwani, K., Gupta, M., & Sanjeevi, S. G. (2021) “Market sentiment-aware deep reinforcement learning approach for stock portfolio a-llocation.”, Engineering Science and Technology, an International Journal, Vol.24(4), pp.848-859.
13.Liu, H., & Long, Z. (2020) “An improved deep learning model for predicting stock market price time series.”, Digital Signal Processing, Vol.102,102741.
14.Lei, K., Zhang, B., Li, Y., Yang, M., & Shen, Y. (2020) “Time-driven feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading.”, Expert Systems with Applications, Vol.140, 112872.
15.Liu, Q., Tao, Z., Tse, Y., & Wang, C. (2021) “Stock market prediction with deep learning: The case of China.”, Finance Research Letters, 102209.
16.Long, W., Lu, Z., & Cui, L. (2019) “Deep learning-based feature engineering for stock price movement prediction.”, Knowledge-Based Systems, Vol.164, pp.163-173.
17.Li, X., Wu, P., & Wang, W. (2020) “Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong.”, Information P-rocessing & Management, Vol.57(5), 102212.
18.Li, X., Shang, W., & Wang, S. (2019) “Text-based crude oil price forecasting: A deep learning approach.”, International Journal of Forecasting, Vol.35(4), pp.1548-1560.
19.Lin, Y., Yan, Y., Xu, J., Liao, Y., & Ma, F. (2021) “Forecasting stock index price using the CEEMDAN-LSTM model.”, The North American Journal of Economics and Finance, Vol.57, 101421.
20.Moghar, A., & Hamiche, M. (2020) “Stock market prediction using LSTM rec-urrent neural network.”, Procedia Computer Science, Vol.170, pp.1168-1173.
21.Moews, B., & Ibikunle, G. (2020) “Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning.”, Physica A: Statistical Mechanics and its Applications, Vol.547, 124392.
22.Mu, W., Rahaman, M., Rios, F. L., Odqvist, J., & Hedström, P. (2021) “Predicting strain-induced martensite in austenitic steels by combining physical modelling and machine learning.”, Materials & Design, Vol.197, 109199.
23.Nevasalmi, L. (2020) “Forecasting multinomial stock returns using machine learning methods.”, The Journal of Finance and Data Science, Vol.6,pp.86-106.
24.Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020) “Deep learning for financial applications: A survey.”, Applied Soft Computing, Vol.93,106384.
25.Qiao, G., Teng, Y., Li, W., & Liu, W. (2019) “Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets.”, The North American Journal of Economics and Finance, Vol.49, pp.133-151.
26.Orimoloye, L. O., Sung, M. C., Ma, T., & Johnson, J. E. (2020) “Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices.”, Expert Systems with Applications,Vol.139, 112828.
27.Peng, Y., Albuquerque, P. H. M., Kimura, H., & Saavedra, C. A. P. B. (2021) “Feature selection and deep neural networks for stock price direction forecasting using technical analysis indicators.”, Machine Learning with Applica-tions, 100060.
28.Ribeiro, F., & Gradvohl, A. L. S. (2021) “Machine learning techniques applied to solar flares forecasting.”, Astronomy and Computing, Vol.35, 100468.
29.Sharma, D. K., Tokas, B., & Adlakha, L. (2020) “Deep learning in big data and data mining.”, Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems, Vol.37.
30.Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., & Li, Y. (2017) “Forecasting price movements using technical indicators: Investigating the impact of varying input window length.”, Neurocomputing, Vol.264, pp.71-88.
31.Shen, Z., Zhang, Y., Lu, J., Xu, J., & Xiao, G. (2020) “A novel time series forecasting model with deep learning.”, Neurocomputing, Vol.396,pp.302-313.
32.Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. (2020) “Stock closing price prediction using machine learning techniques.”, Procedia Computer S-cience, Vol.167, pp.599-606.
33.Wang, Y., Liu, L., & Wu, C. (2020) “Forecasting commodity prices out-of-sample: Can technical indicators help?.”, International Journal of Forecasting, Vol.36(2), pp.666-683.
34.Xie, M., Li, H., & Zhao, Y. (2020) “Blockchain financial investment based on deep learning network algorithm.”, Journal of Computational and Applied Mathematics, Vol.372, 112723.
35.Yin, L., & Yang, Q. (2016) “Predicting the oil prices: do technical indicators help?.”, Energy Economics, Vol.56, pp.338-350.
36.Zhang, X., & Zhang, S. (2021) “Optimal time-varying tail risk network with a rolling window approach.”, Physica A: Statistical Mechanics and its Appli-cations, 126127.
37.Zhang, Y., Ma, F., & Liao, Y. (2020) “Forecasting global equity market volatilities.”, International Journal of Forecasting, Vol.36(4), pp.1454-1475.
中文文獻
1.林儒霆 (2008) 以多項技術指標建構股市投資決策支援系統之研究,中國文化大學資訊管理研究所,碩士論文。2.陳嘉琪 (2016) 新穎權重調整方式之類神經應用於股價預測問題,國立暨南大學資訊工程學系,碩士論文3.陳郁夫 (2018)。運用多模式深度強化學習與語義影響模型於交易策略,國立交通大學資訊管理與財務金融學系資訊管理碩士班,碩士論文。4.林逸青 (2019)。以深度學習建構股價預測模型:以台灣股票市場為例,國立臺中科技大學財務金融研究所碩士班,碩士論文。5.邱彥誠 (2020)。應用人工智慧於股市新聞與情感分析預測股價走勢,國立台北大學資訊管理研究所,碩士論文。6.孫永鴻 (2020)。機器學習演算法在股票交易策略之應用。國立臺北大學統計學系碩士,碩士論文7.陳彥安(2019)。深度學習於台股動態投資組合之應用。國立交通大學管理學院財務金融學程,碩士論文