|
[1]M. E. Nell and A. M. Barnett, “The spectral p-n junction model for tandem solar-cell design,” IEEE Trans. Electron Devices, vol. 34, no. 2, pp. 257–266, Feb. 1987, doi: 10.1109/T-ED.1987.22916. [2]R. Strandberg, “Detailed balance analysis of area de-coupled double tandem photovoltaic modules,” Appl. Phys. Lett., vol. 106, no. 3, p. 033902, Jan. 2015, doi: 10.1063/1.4906602. [3]“en.wikipedia solar cell.url.” [4]A. Chandra, G. Anderson, S. Melkote, W. Gao, H. Haitjema, and K. Wegener, “Role of surfaces and interfaces in solar cell manufacturing,” CIRP Ann., vol. 63, no. 2, pp. 797–819, 2014, doi: 10.1016/j.cirp.2014.05.008. [5]M. Jošt, S. Albrecht, B. Lipovšek, J. Krč, L. Korte, B. Rech, and M. Topič, “Back- and Front-side Texturing for Light-management in Perovskite / Silicon-heterojunction Tandem Solar Cells,” Energy Procedia, vol. 102, pp. 43–48, Dec. 2016, doi: 10.1016/j.egypro.2016.11.316. [6]R. Pandey and R. Chaujar, “Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell,” Superlattices Microstruct., vol. 100, pp. 656–666, Dec. 2016, doi: 10.1016/j.spmi.2016.10.033. [7]S. S. A. Askari, M. Kumar, and M. K. Das, “Performance Analysis of Perovskite on Si Tandem Solar Cell,” Mater. Today Proc., vol. 4, no. 14, pp. 12647–12650, 2017, doi: 10.1016/j.matpr.2017.10.076. [8]C. O. Ramírez Quiroz, Yilei Shen, Michael Salvador, Karen Forberich, Nadine Schrenker, George D. Spyropoulos, Thomas Heumuller, Benjamin Wilkinson, Thomas Kirchartz, Erdmann Spiecker, Pierre J. Verlinden, Xueling Zhang, Martin A. Green, Anita Ho-Baillie, and Christoph J. Brabec, “Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrodes,” J. Mater. Chem. A, vol. 6, no. 8, pp. 3583–3592, 2018, doi: 10.1039/C7TA10945H. [9]Z. Qiu, Ziqi Xu, Nengxu Li, Ning Zhou, Yihua Chen, Xingxing Wan, Jialiang Liu, Ning Li, Xiaotao Hao, Pengqing Bi, Qi Chen, Bingqiang Cao, and Huanping Zhou., “Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber,” Nano Energy, vol. 53, pp. 798–807, Nov. 2018, doi: 10.1016/j.nanoen.2018.09.052. [10]Z. Ren, Jixiang Zhou, Yaokang Zhang, Annie Ng, Qian Shen, Sin Hang Cheung, Hui Shen, Kan Li, Zijian Zheng, Shu Kong So, Aleksandra B. Djurišić, and Charles Surya, “Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells,” Sol. Energy Mater. Sol. Cells, vol. 179, pp. 36–44, Jun. 2018, doi: 10.1016/j.solmat.2018.01.004. [11]D. H. Kim, Christopher P. Muzzillo, Jinhui Tong, Yu Huang, Yanfa Yan, and Kai Zhu, “Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS,” Joule, vol. 3, no. 7, pp. 1734–1745, Jul. 2019, doi: 10.1016/j.joule.2019.04.012. [12]I. J. Park, J. H. Park, S. G. Ji, M.-A. Park, J. H. Jang, and J. Y. Kim, “A Three-Terminal Monolithic Perovskite/Si Tandem Solar Cell Characterization Platform,” Joule, vol. 3, no. 3, pp. 807–818, Mar. 2019, doi: 10.1016/j.joule.2018.11.017. [13]T. J. Jacobsson, Adam Hultqvist, Sebastian Svanström, Lars Riekehr, Ute B. Cappel, Eva Unger, Håkan Rensmo, Erik M.J. Johansson, Marika Edoff, and Gerrit Boschloo, “2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration,” Sol. Energy, vol. 207, pp. 270–288, Sep. 2020, doi: 10.1016/j.solener.2020.06.034. [14]B. Chen, Se-Woong Baek, Yi Hou, Erkan Aydin, Michele De Bastiani, Benjamin Scheffel, Andrew Proppe, Ziru Huang, Mingyang Wei, Ya-Kun Wang, Eui-Hyuk Jung, Thomas G. Allen, Emmanuel Van Kerschaver, F. Pelayo García de Arquer, Makhsud I. Saidaminov, Sjoerd Hoogland, Stefaan De Wolf, and Edward H. Sargent, “Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems,” Nat. Commun., vol. 11, no. 1, p. 1257, Mar. 2020, doi: 10.1038/s41467-020-15077-3. [15]M. Mousa, M. M. Salah, F. Z. Amer, A. Saeed, and R. I. Mubarak, “High Efficiency Tandem Perovskite/CIGS Solar Cell,” in 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), Bangkok, Thailand: IEEE, Sep. 2020, pp. 224–227. doi: 10.1109/SPIES48661.2020.9242927. [16]M. Nakamura, Keishi Tada, Takumi Kinoshita, Yuta Higashino, Hiroki Sugimoto, and Hiroshi Segawa,“Perovskite/CIGS Spectral Splitting Double Junction Solar Cell with 28% Power Conversion Efficiency,” iScience, vol. 23, no. 12, p. 101817, Dec. 2020, doi: 10.1016/j.isci.2020.101817. [17]Z. Ying, Yudong Zhu, Xiyuan Feng, Jingwei Xiu, Rui Zhang, Xuhang Ma, Yunsheng Deng, Hui Pan, and Zhubing He, “Sputtered Indium‐Zinc Oxide for Buffer Layer Free Semitransparent Perovskite Photovoltaic Devices in Perovskite/Silicon 4T‐Tandem Solar Cells,” Adv. Mater. Interfaces, vol. 8, no. 6, p. 2001604, Mar. 2021, doi: 10.1002/admi.202001604. [18]A. Al-Ashouri, Eike Köhnen, Bor Li, Artiom Magomedov, Hannes Hempel, Pietro Caprioglio, José A. Márquez, Anna Belen Morales-Vilches, Ernestas Kasparavicius, Joel A. Smith, Nga Phung, Dorothee Menzel, Max Grischek, Lukas Kegelmann, Dieter Skroblin, Christian Gollwitzer, Christian Gollwitzer, Marko Jošt, Gašper Matič, Gašper Matič, Rutger Schlatmann, Marko Topič, Lars Korte, Antonio Abate, Bernd Stannowski, Dieter Neher, Martin Stolterfoht, Thomas Unold, Vytautas Getautis, and Steve Albrecht, “Title: Monolithic Perovskite/Silicon Tandem Solar Cell with >29% Efficiency by Enhanced Hole Extraction”. [19]I. Mohanty, S. Mangal, and U. P. Singh, “Performance optimization of lead free-MASnI3/CIGS heterojunction solar cell with 28.7% efficiency: A numerical approach,” Opt. Mater., vol. 122, p. 111812, Dec. 2021, doi: 10.1016/j.optmat.2021.111812. [20]J. Liu, Erkan Aydin, Jun Yin, Omar F. Mohammed, Fre´ de´ ric Laquai, Stefaan De Wolf, “28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell,” Joule, vol. 5, no. 12, pp. 3169–3186, Dec. 2021, doi: 10.1016/j.joule.2021.11.003. [21]“Solar Spectrum.url.” https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png [22]K. Deepthi Jayan and V. Sebastian, “Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts,” Sol. Energy, vol. 217, pp. 40–48, Mar. 2021, doi: 10.1016/j.solener.2021.01.058. [23]S. Abdelaziz, A. Zekry, A. Shaker, and M. Abouelatta, “Investigation of lead-free MASnI3-MASnIBr2 tandem solar cell: Numerical simulation,” Opt. Mater., vol. 123, p. 111893, Jan. 2022, doi: 10.1016/j.optmat.2021.111893. [24]F. Baig, Y. H. Khattak, B. Marí, S. Beg, S. R. Gillani, and A. Ahmed, “Mitigation of interface recombination by careful selection of ETL for efficiency enhancement of MASnI3 solar cell,” Optik, vol. 170, pp. 463–474, Oct. 2018, doi: 10.1016/j.ijleo.2018.05.135. [25]A. K. Singh, S. Srivastava, A. Mahapatra, J. K. Baral, and B. Pradhan, “Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation,” Opt. Mater., vol. 117, p. 111193, Jul. 2021, doi: 10.1016/j.optmat.2021.111193. [26]I. Mohanty, S. Mangal, and U. P. Singh, “Performance optimization of lead free-MASnI3/CIGS heterojunction solar cell with 28.7% efficiency: A numerical approach,” Opt. Mater., vol. 122, p. 111812, Dec. 2021, doi: 10.1016/j.optmat.2021.111812. [27]H. Abedini-Ahangarkola, S. Soleimani-Amiri, and S. Gholami Rudi, “Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers,” Sol. Energy, vol. 236, pp. 724–732, Apr. 2022, doi: 10.1016/j.solener.2022.03.055. [28]H. Bencherif and M. Khalid Hossain, “Design and numerical investigation of efficient (FAPbI3)1−x(CsSnI3)x perovskite solar cell with optimized performances,” Sol. Energy, vol. 248, pp. 137–148, Dec. 2022, doi: 10.1016/j.solener.2022.11.012. [29]S. F. Akhtarianfar, S. Shojaei, and S. Khameneh Asl, “High-performance CsPbI3 /XPbI3 (X=MA and FA) heterojunction perovskite solar cell,” Opt. Commun., vol. 512, p. 128053, Jun. 2022, doi: 10.1016/j.optcom.2022.128053. [30]H. Bencherif and M. Khalid Hossain, “Performance enhancement of (FAPbI3)1-x(MAPbBr3)x perovskite solar cell with an optimized design,” Micro Nanostructures, vol. 171, p. 207403, Nov. 2022, doi: 10.1016/j.micrna.2022.207403. [31]Yassine Raoui, Hamid Ez-Zahraouy, Najim Tahiri, Omar El Bounagui, Shahzada Ahmad, and Samrana Kazim, “A SCAPS simulation investigation of non-toxic MAGeI3-on-Si tandem solar device utilizing monolithically integrated (2-T) and mechanically stacked (4-T) configurations,” Sol. Energy, vol. 225, pp. 471–485, Sep. 2021, doi: 10.1016/j.solener.2021.07.057. [32]T. Bendib, H. Bencherif, M. A. Abdi, F. Meddour, L. Dehimi, and M. Chahdi, “Combined optical-electrical modeling of perovskite solar cell with an optimized design,” Opt. Mater., vol. 109, p. 110259, Nov. 2020, doi: 10.1016/j.optmat.2020.110259. [33]R. Lu, Y. Liu, J. Zhang, D. Zhao, X. Guo, and C. Li, “Highly efficient (200) oriented MAPbI3 perovskite solar cells,” Chem. Eng. J., vol. 433, p. 133845, Apr. 2022, doi: 10.1016/j.cej.2021.133845. [34]T. Ouslimane, L. Et-taya, L. Elmaimouni, and A. Benami, “Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material,” Heliyon, vol. 7, no. 3, p. e06379, Mar. 2021, doi: 10.1016/j.heliyon.2021.e06379. [35]Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, and S. Kazim, “Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study,” Sol. Energy, vol. 193, pp. 948–955, Nov. 2019, doi: 10.1016/j.solener.2019.10.009. [36]M. Khanzadeh, H. Kargaran, A. Hamedani, and G. Alahyarizadeh, “Structural optimization of a perovskite solar cell using single- and multi-objective particle swarm optimization method,” Micro Nanostructures, vol. 170, p. 207362, Oct. 2022, doi: 10.1016/j.micrna.2022.207362. [37]S. Karthick, S. Velumani, and J. Bouclé, “Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance,” Sol. Energy, vol. 205, pp. 349–357, Jul. 2020, doi: 10.1016/j.solener.2020.05.041. [38]Z. ul Abdin, I. Qasim, O. Ahmad, and M. Rashid, “Numerical modelling analysis of (FA)0.85Cs0.15Pb(I0.85 Br0.15)3: (FAPI)-based perovskite solar cell with different ETMs using solar capacitance simulator,” Sol. Energy, vol. 228, pp. 100–119, Nov. 2021, doi: 10.1016/j.solener.2021.09.054. [39]A. Chetia, D. Saikia, and S. Sahu, “Design and optimization of the performance of CsPbI3 based vertical photodetector using SCAPS simulation,” Optik, vol. 269, p. 169804, Nov. 2022, doi: 10.1016/j.ijleo.2022.169804. [40]S. Khatoon, S. K. Yadav, J. Singh, and R. B. Singh, “Design of a CH3NH3PbI3/CsPbI3-based bilayer solar cell using device simulation,” Heliyon, vol. 8, no. 7, p. e09941, Jul. 2022, doi: 10.1016/j.heliyon.2022.e09941. [41]L. Lin, Satish Kumar Yadav, Jyotsna Singh, and Rajendra Bahadur Singh, “Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells,” Sol. Energy, vol. 198, pp. 454–460, Mar. 2020, doi: 10.1016/j.solener.2020.01.081. [42]D. Jayan K, V. Sebastian, and J. Kurian, “Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells,” Sol. Energy, vol. 221, pp. 99–108, Jun. 2021, doi: 10.1016/j.solener.2021.04.030. [43]M. S. Islam and Md. A. Haque, “Comparative Numerical Study Of Hole Transport Layer To Improve The Performance Of Cs2TiI6 Based Perovskite Solar Cell,” in 2021 5th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh: IEEE, Dec. 2021, pp. 1–5. doi: 10.1109/EICT54103.2021.9733656. [44]O. Ahmad, A. Rashid, M. W. Ahmed, M. F. Nasir, and I. Qasim, “Performance evaluation of Au/p-CdTe/Cs2TiI6/n-TiO2/ITO solar cell using SCAPS-1D,” Opt. Mater., vol. 117, p. 111105, Jul. 2021, doi: 10.1016/j.optmat.2021.111105. [45]N. Lakhdar and A. Hima, “Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3,” Opt. Mater., vol. 99, p. 109517, Jan. 2020, doi: 10.1016/j.optmat.2019.109517. [46]A. Hima and N. Lakhdar, “Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2,” Opt. Mater., vol. 99, p. 109607, Jan. 2020, doi: 10.1016/j.optmat.2019.109607. [47]N. Singh, A. Agarwal, and M. Agarwal, “Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell,” Sol. Energy, vol. 208, pp. 399–410, Sep. 2020, doi: 10.1016/j.solener.2020.08.003. [48]S. Bhattarai and T. D. Das, “Optimization of carrier transport materials for the performance enhancement of the MAGeI3 based perovskite solar cell,” Sol. Energy, vol. 217, pp. 200–207, Mar. 2021, doi: 10.1016/j.solener.2021.02.002. [49]A.-A. Kanoun, M. B. Kanoun, A. E. Merad, and S. Goumri-Said, “Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach,” Sol. Energy, vol. 182, pp. 237–244, Apr. 2019, doi: 10.1016/j.solener.2019.02.041. [50]Sachchidanand, A. Kumar, and P. Sharma, “A comparative study of the organic and inorganic photovoltaic cells with/ without lead cation,” in 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS), Jabalpur, India: IEEE, Dec. 2021, pp. 1–5. doi: 10.1109/CAPS52117.2021.9730721. [51]Sachchidanand, V. Garg, A. Kumar, and P. Sharma, “A model development of lead-free Cs3Sb2Br9 based novel perovskite solar cell by SCAPS-1D,” in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA: IEEE, Jun. 2021, pp. 1199–1203. doi: 10.1109/PVSC43889.2021.9518570. [52]Sachchidanand, V. Garg, A. Kumar, and P. Sharma, “Numerical simulation of novel lead-free Cs3Sb2Br9 absorber-based highly efficient perovskite solar cell,” Opt. Mater., vol. 122, p. 111715, Dec. 2021, doi: 10.1016/j.optmat.2021.111715. [53]Andr´e F. Violas, Antonio ´ J.N. Oliveira, Jennifer P. Teixeira, Tomas ´ S. Lopes, Joao R.S. Barbosa, Paulo A. Fernandes , and Pedro M.P. Salome, “Will ultrathin CIGS solar cells overtake the champion thin-film cells? Updated SCAPS baseline models reveal main differences between ultrathin and standard CIGS,” Sol. Energy Mater. Sol. Cells, vol. 243, p. 111792, Aug. 2022, doi: 10.1016/j.solmat.2022.111792. [54]M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou, “Simulation of High Efficiency CIGS Solar Cells with SCAPS-1D Software,” Energy Procedia, vol. 74, pp. 736–744, Aug. 2015, doi: 10.1016/j.egypro.2015.07.809. [55]R. N. Mohottige and S. P. Kalawila Vithanage, “Numerical simulation of a new device architecture for CIGS-based thin-film solar cells using 1D-SCAPS simulator,” J. Photochem. Photobiol. Chem., vol. 407, p. 113079, Feb. 2021, doi: 10.1016/j.jphotochem.2020.113079. [56]S. Cheng, Z. Rouabah, and N. Bouarissa, “Analyzing the causes of limited performance improvement in cigs devices after potassium fluoride post-deposition treatment using SCAPS,” Optik, vol. 219, p. 164757, Oct. 2020, doi: 10.1016/j.ijleo.2020.164757. [57]M. Al-Hattab, L. Moudou, M. Khenfouch, O. Bajjou, Y. Chrafih, and K. Rahmani, “Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software,” Sol. Energy, vol. 227, pp. 13–22, Oct. 2021, doi: 10.1016/j.solener.2021.08.084. [58]H. Heriche, Z. Rouabah, and N. Bouarissa, “New ultra thin CIGS structure solar cells using SCAPS simulation program,” Int. J. Hydrog. Energy, vol. 42, no. 15, pp. 9524–9532, Apr. 2017, doi: 10.1016/j.ijhydene.2017.02.099.
|