|
[1] Judge, L. W., Hunter, I., & Gilreath, E. (2008). Using sport science to improve coaching: A case study of the American record holder in the women's hammer throw. International Journal of Sports Science & Coaching, 3(4), 477-488. [2] 陳文良 與 林宗正 ,,( 鏈球投 擲動作之定性分析 中華體育季刊, ,10( 65-73。 [3] 吳淑真 ( 臺灣體育運動科學發展現況與未來趨勢 體育學報 49( 1-14。 [4] 李文姬 ,,( 木球之運動科學應用與技術之探討 大專體育 ,,( 22-28。 [5] 劉錦章、黃長福、侯金賢( 2000)。鏈球投擲之運動學分析。大專體育 ,30 1-9。 [6] Bolotin, A. E., Bakayev, V. V., Orlova, N., & Kozulko, A. (2017). Peculiarities of time structure and of biomechanical organization of a construction of motor actions in the hammer throw. In 8th INTERNATIONAL SCIENTIFIC CONFERENCE ON KINESIOLOGY (pp. 137-141). [7] Judge, L. W., Hunter, I., & Gilreath, E. (2008). Using sport science to improve coaching: A case study of the American record holder in the women's hammer throw. International Journal of Sports Science & Coaching, 3(4), 477-488. [8] 周昱百 ,,( 人工智慧於視網膜疾病之應用 臨床醫學月刊 , 86(1), 407-409。 [9] 盧羿程 、 張瑞益 ,,( 應用機器學習於預測維護診斷之馬達故障頻譜研究 中 國造船暨輪機工程學刊 38(3& 157-163。 [10] Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers Inc. [11] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117. [12] O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. [13] 蔡俊明與林育正。 (2019)。使用深度學習方法作大量資料的商品辨識。 TANET2019 臺灣網際網路研討會, 193-198。 [14] Fukushima, K. (1980). A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern., 36, 193-202. [15] Jin, S., Ma, X., Han, Z., Wu, Y., Yang, W., Liu, W., ... & Ouyang, W. (2017). Towards multi-person pose tracking: Bottom-up and top-down methods. In ICCV PoseTrack Workshop (Vol. 2, No. 3, p. 7). [16] Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). [17] Bajpai, R., & Joshi, D. (2021). Movenet: A deep neural network for joint profile prediction across variable walking speeds and slopes. IEEE Transactions on Instrumentation and Measurement, 70, 1-11. 30 [18] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
|