|
1.Wu, Q., et al., Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 2020. 9(1): p. 259-273. 2.Almuhammady, A.K., et al., Nanomaterials Fundamentals: Classification, Synthesis and Characterization, in Nanobiotechnology : Mitigation of Abiotic Stress in Plants. 2021, Springer International Publishing: Cham. p. 77-99. 3.Poulopoulos, P. and K. Baberschke, Magnetism in thin films. Journal of Physics: Condensed Matter, 1999. 11(48): p. 9495. 4.Kryder, M.H., Magnetic thin films for data storage. Thin Solid Films, 1992. 216(1): p. 174-180. 5.Barnaś, J., et al., Novel magnetoresistance effect in layered magnetic structures: Theory and experiment. Physical Review B, 1990. 42(13): p. 8110-8120. 6.Yang, H.X., et al., First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces. Physical Review B, 2011. 84(5): p. 054401. 7.Tudu, B. and A. Tiwari, Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications. Vacuum, 2017. 146: p. 329-341. 8.Osaka, T., et al., Development of high-performance magnetic thin film for high-density magnetic recording. Electrochimica Acta, 2005. 50(23): p. 4576-4585. 9.Fert, A., N. Reyren, and V. Cros, Magnetic skyrmions: advances in physics and potential applications. Nature Reviews Materials, 2017. 2(7): p. 17031. 10.Lee, M.-K. and M. Mochizuki, Reservoir Computing with Spin Waves in a Skyrmion Crystal. Physical Review Applied, 2022. 18(1): p. 014074. 11.Prychynenko, D., et al., Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing. Physical Review Applied, 2018. 9(1): p. 014034. 12.Fattouhi, M., et al., Electric Field Control of the Skyrmion Hall Effect in Piezoelectric-Magnetic Devices. Physical Review Applied, 2021. 16(4): p. 044035. 13.Voloshin, I., et al., Nonlinear resistance of thin metal plates. Sov. Phys. JETP, 1985. 62(1): p. 132-136. 14.Tsymbal, E.Y. and D.G. Pettifor, Perspectives of giant magnetoresistance, in Solid State Physics, H. Ehrenreich and F. Spaepen, Editors. 2001, Academic Press. p. 113-128. 15.White, R.L., Giant magnetoresistance: a primer. IEEE Transactions on Magnetics, 1992. 28(5): p. 2482-2487. 16.Sheng, S., et al., Investigation on interface of NiFeCr/NiFe/Ta films with high magnetic field sensitivity. Rare Metals, 2012. 31(1): p. 22-26. 17.Zhao, C.-J., et al., Research progress in anisotropic magnetoresistance. Rare Metals, 2013. 32(3): p. 213-224. 18.Eerenstein, W., N.D. Mathur, and J.F. Scott, Multiferroic and magnetoelectric materials. Nature, 2006. 442(7104): p. 759-765. 19.Hoffmann, A., Spin Hall Effects in Metals. IEEE Transactions on Magnetics, 2013. 49(10): p. 5172-5193. 20.Sinova, J., et al., Spin Hall effects. Reviews of Modern Physics, 2015. 87(4): p. 1213-1260. 21.Jungwirth, T., J. Wunderlich, and K. Olejník, Spin Hall effect devices. Nature Materials, 2012. 11(5): p. 382-390. 22.Ralph, D.C. and M.D. Stiles, Spin transfer torques. Journal of Magnetism and Magnetic Materials, 2008. 320(7): p. 1190-1216. 23.Brataas, A., A.D. Kent, and H. Ohno, Current-induced torques in magnetic materials. Nature Materials, 2012. 11(5): p. 372-381. 24.Manchon, A., et al., New perspectives for Rashba spin–orbit coupling. Nature Materials, 2015. 14(9): p. 871-882. 25.Jiang, W., et al., Skyrmions in magnetic multilayers. Physics Reports, 2017. 704: p. 1-49. 26.Wang, L., et al., Construction of a Room-Temperature Pt/Co/Ta Multilayer Film with Ultrahigh-Density Skyrmions for Memory Application. ACS Applied Materials & Interfaces, 2019. 11(12): p. 12098-12104. 27.Tokura, Y. and N. Kanazawa, Magnetic Skyrmion Materials. Chemical Reviews, 2021. 121(5): p. 2857-2897. 28.Kang, W., et al., Skyrmion-Electronics: An Overview and Outlook. Proceedings of the IEEE, 2016. 104(10): p. 2040-2061. 29.Camley, R.E. and K.L. Livesey, Consequences of the Dzyaloshinskii-Moriya interaction. Surface Science Reports, 2023. 78(3): p. 100605. 30.Nembach, H.T., et al., Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nature Physics, 2015. 11(10): p. 825-829. 31.Singh, J. and D.E. Wolfe, Review Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD). Journal of Materials Science, 2005. 40(1): p. 1-26. 32.Awan, T.I., A. Bashir, and A. Tehseen, Chemistry of nanomaterials: fundamentals and applications. 2020: Elsevier. 51-78. 33.Wei, X., et al., Breakdown of Richardson's Law in Electron Emission from Individual Self-Joule-Heated Carbon Nanotubes. Scientific Reports, 2014. 4(1): p. 5102. 34.Awan, T.I., A. Bashir, and A. Tehseen, Chemistry of nanomaterials: Fundamentals and applications. 2020: Elsevier. 35.Zhang, Z. and M.G. Lagally, Atomistic Processes in the Early Stages of Thin-Film Growth. Science, 1997. 276(5311): p. 377-383. 36.Gilmer, G.H., H. Huang, and C. Roland, Thin film deposition: fundamentals and modeling. Computational Materials Science, 1998. 12(4): p. 354-380. 37.Geetha Priyadarshini, B., S. Aich, and M. Chakraborty, On the microstructure and interfacial properties of sputtered nickel thin film on Si (1 0 0). Bulletin of Materials Science, 2014. 37(6): p. 1265-1273. 38.Wang, X., et al., Manipulating density of magnetic skyrmions via multilayer repetition and thermal annealing. Physical Review B, 2021. 104(6): p. 064421. 39.Davis, J.A., et al., Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings of the IEEE, 2001. 89(3): p. 305-324. 40.Zhang, W., et al., Influence of the electron mean free path on the resistivity of thin metal films. Microelectronic Engineering, 2004. 76(1): p. 146-152. 41.Gall, D., Electron mean free path in elemental metals. Journal of Applied Physics, 2016. 119(8): p. 085101. 42.Valek, B.C., et al., Early stage of plastic deformation in thin films undergoing electromigration. Journal of Applied Physics, 2003. 94(6): p. 3757-3761. 43.Jin, Z., et al., Electromigration behavior of silver thin film fabricated by electron-beam physical vapor deposition. Journal of Materials Science, 2021. 56(16): p. 9769-9779. 44.Aguilar, M., et al., Electromigration in gold thin films. Thin Solid Films, 1998. 317(1): p. 189-192. 45.Sze, S.M., Y. Li, and K.K. Ng, Physics of semiconductor devices. 2021: John wiley & sons. 46.Slater, J.C., The Ferromagnetism of Nickel. Physical Review, 1936. 49(7): p. 537-545. 47.Kaufman, A.A., R.O. Hansen, and R.L.K. Kleinberg, Paramagnetism, Diamagnetism, and Ferromagnetism, in Methods in Geochemistry and Geophysics, A.A. Kaufman, R.O. Hansen, and R.L.K. Kleinberg, Editors. 2008, Elsevier. p. 207-254. 48.Stearns, M.B., On the Origin of Ferromagnetism and the Hyperfine Fields in Fe, Co, and Ni. Physical Review B, 1973. 8(9): p. 4383-4398. 49.Kim, Y.K. and M. Oliveria, Magnetic properties of sputtered Fe thin films: Processing and thickness dependence. Journal of Applied Physics, 1993. 74(2): p. 1233-1241. 50.Singh, J., et al., Investigation of structural and magnetic properties of Ni, NiFe and NiFe2O4 thin films. Journal of Magnetism and Magnetic Materials, 2012. 324(6): p. 999-1005. 51.Li, X.H. and Z. Yang, Effects of sputtering conditions on the structure and magnetic properties of Ni–Fe films. Materials Science and Engineering: B, 2004. 106(1): p. 41-45. 52.Taberkani, L. and A. Kharmouche, Structural, electrical and magnetic properties of evaporated FexNi1-x thin films. Physica B: Condensed Matter, 2023. 656: p. 414782. 53.Dimitrov, D.V., et al., Magnetic properties and microstructure of Fe-O and Co-O thin films. IEEE Transactions on Magnetics, 1997. 33(5): p. 4363-4366. 54.Kachi, S., K. Momiyama, and S. Shimizu, An Electron Diffraction Study and a Theory of the Transformation from γ-Fe2O3 to α-Fe2O3. Journal of the Physical Society of Japan, 1963. 18(1): p. 106-116. 55.Blaney, L., Magnetite (Fe3O4): Properties, synthesis, and applications. 2007. 56.Patterson, A., The Scherrer formula for X-ray particle size determination. Physical review, 1939. 56(10): p. 978.
|