|
References [1] Novoselov KS, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102 (30) (2005), 10451-3. [2] Mannix AJ, Kiraly B, Hersam MC, Guisinger NP. Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry, 1 (2) (2017), 1-14. [3] Brent JR, Savjani N, O'Brien P. Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 89 (2017), 411-78. [4] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321 (5887) (2008), 385-8. [5] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano letters, 8 (3) (2008), 902-7. [6] Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature, 499 (7459) (2013), 419-25. [7] Shi Y, Zhou W, Lu A-Y, Fang W, Lee Y-H, Hsu AL, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano letters, 12 (6) (2012), 2784-91. [8] Ago H, Endo H, Solis-Fernandez P, Takizawa R, Ohta Y, Fujita Y, et al. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. ACS Applied Materials & Interfaces, 7 (9) (2015), 5265-73. [9] Ceballos F, Bellus MZ, Chiu H-Y, Zhao H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS nano, 8 (12) (2014), 12717-24. [10] Lin Y-C, Chang C-YS, Ghosh RK, Li J, Zhu H, Addou R, et al. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. Nano letters, 14 (12) (2014), 6936-41. [11] Xia F, Mueller T, Lin Y. m, Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat Nanotechnol, 4 (2009), 839-43. [12] Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Advanced Materials, 5 (4) (2013), 263-75. [13] Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science, 340 (6139) (2013), [14] Cao X, Tan C, Zhang X, Zhao W, Zhang H. Solution‐processed two‐dimensional metal dichalcogenide‐based nanomaterials for energy storage and conversion. Advanced Materials, 28 (29) (2016), 6167-96. [15] Tan C, Zhang HJCSR. Two-dimensional transition metal dichalcogenide nanosheet-based composites. 44 (9) (2015), 2713-31. [16] Tan C, Zhang H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. Journal of the American Chemical Society, 137 (38) (2015), 12162-74. [17] Gan X, Lv R, Zhang T, Zhang F, Terrones M, Kang F. Transferrable polymeric carbon nitride/nitrogen-doped graphene films for solid state optoelectronics. Carbon, 138 (2018), 69-75. [18] Ullah F, Sim Y, Le CT, Seong M-J, Jang JI, Rhim SH, et al. Growth and simultaneous valleys manipulation of two-dimensional MoSe2-WSe2 lateral heterostructure. ACS nano, 11 (9) (2017), 8822-9. [19] Ben Aziza Z, Henck H, Pierucci D, Silly MG, Lhuillier E, Patriarche G, et al. van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties. ACS Nano, 10 (10) (2016), 9679-86. [20] Zhang W, Chuu C-P, Huang J-K, Chen C-H, Tsai M-L, Chang Y-H, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Scientific reports, 4 (1) (2014), 1-8. [21] Withers F, Pozo-Zamudio D, Mishchenko A, Rooney A, Gholinia A, Watanabe K, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature materials, 14 (3) (2015), 301-6. [22] Lv Q, Lv R. Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: synthesis, transfer and applications. Carbon, 145 (2019), 240-50. [23] Roy T, Tosun M, Cao X, Fang H, Lien D-H, Zhao P, et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS nano, 9 (2) (2015), 2071-9. [24] Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, et al. Recent advances in two-dimensional materials beyond graphene. ACS nano, 9 (12) (2015), 11509-39. [25] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang JS, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences, 111 (17) (2014), 6198-202. [26] Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature communications, 7 (1) (2016), 1-8. [27] Babu G, Masurkar N, Al Salem H, Arava LMR. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. Journal of the American Chemical Society, 139 (1) (2017), 171-8. [28] Regli S, Kelly JA, Barnes MA, Andrei CM, Veinot JG. Mesoporous silica encapsulation of silicon nanocrystals: synthesis, aqueous dispersibility and drug release. Materials Letters, 115 (2014), 21-4. [29] Li J, Lin J, Xu X, Zhang X, Xue Y, Mi J, et al. Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology, 24 (15) (2013), 155603. [30] Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 50 (4) (2012), 1699-703. [31] Lin Y, Moitoso B, Martinez-Martinez C, Walsh ED, Lacey SD, Kim J-W, et al. Ultrahigh-capacity lithium–oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Letters, 17 (5) (2017), 3252-60. [32] Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS nano, 11 (10) (2017), 9614-35. [33] Han L, Wang L, Song J, Boyce MC, Ortiz C. Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars. Nano letters, 11 (9) (2011), 3868-74. [34] Hoa MLK, Lu M, Zhang Y. Preparation of porous materials with ordered hole structure. Advances in colloid and interface science, 121 (1-3) (2006), 9-23. [35] Zhao J, Cheng F, Yi C, Liang J, Tao Z, Chen J. Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. Journal of Materials Chemistry, 19 (24) (2009), 4108-16. [36] Chen D, Zhang H, Liu Y, Li J. Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy & Environmental Science, 6 (5) (2013), 1362-87. [37] Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10 (8) (2011), 569-81. [38] Moore AL, Shi L. Emerging challenges and materials for thermal management of electronics. Materials Today, 17 (4) (2014), 163-74. [39] Ansari R, Ajori S, Motevalli B. Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices and Microstructures, 51 (2) (2012), 274-89. [40] Allen BL, Kichambare PD, Star A. Carbon nanotube field‐effect‐transistor‐based biosensors. Advanced Materials, 19 (11) (2007), 1439-51. [41] Fennimore A, Yuzvinsky T, Han W-Q, Fuhrer M, Cumings J, Zettl A. Rotational actuators based on carbon nanotubes. nature, 424 (6947) (2003), 408-10. [42] Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences, 35 (1) (2010), 52-71. [43] Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy & Environmental Science, 4 (4) (2011), 1113-32. [44] Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, et al. Hierarchically porous graphene as a lithium–air battery electrode. Nano letters, 11 (11) (2011), 5071-8. [45] Datta D, Li J, Shenoy VB. Defective graphene as a high-capacity anode material for Na-and Ca-ion batteries. ACS applied materials & interfaces, 6 (3) (2014), 1788-95. [46] Avouris P, Dimitrakopoulos C. Graphene: synthesis and applications. Materials today, 15 (3) (2012), 86-97. [47] Pumera M. Graphene-based nanomaterials for energy storage. Energy & Environmental Science, 4 (3) (2011), 668-74. [48] Brownson DA, Kampouris DK, Banks CE. An overview of graphene in energy production and storage applications. Journal of Power Sources, 196 (11) (2011), 4873-85. [49] Renteria JD, Nika DL, Balandin AA. Graphene thermal properties: applications in thermal management and energy storage. Applied sciences, 4 (4) (2014), 525-47. [50] Li Y, Wang S, Wang Q. A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon, 111 (2017), 538-45. [51] Penkov O, Kim H-J, Kim H-J, Kim D-E. Tribology of graphene: a review. International journal of precision engineering and manufacturing, 15 (3) (2014), 577-85. [52] Akbarzadeh A, Fu J, Chen Z, Qian L. Dynamic eigenstrain behavior of magnetoelastic functionally graded cellular cylinders. Composite Structures, 116 (2014), 404-13. [53] Akbarzadeh A, Fu J, Liu L, Chen Z, Pasini D. Electrically conducting sandwich cylinder with a planar lattice core under prescribed eigenstrain and magnetic field. Composite Structures, 153 (2016), 632-44. [54] Fu J, Akbarzadeh A, Chen Z, Qian L, Pasini D. Non-Fourier heat conduction in a sandwich panel with a cracked foam core. International Journal of Thermal Sciences, 102 (2016), 263-73. [55] Rafsanjani A, Akbarzadeh A, Pasini D. Metamaterials: snapping mechanical metamaterials under tension (Adv. Mater. 39/2015). Advanced Materials, 27 (39) (2015), 5930-. [56] Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, et al. Dimensional crossover of thermal transport in few-layer graphene. Nature materials, 9 (7) (2010), 555-8. [57] Ghosh D, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 92 (15) (2008), 151911. [58] Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano letters, 10 (5) (2010), 1645-51. [59] Jauregui LA, Yue Y, Sidorov AN, Hu J, Yu Q, Lopez G, et al. Thermal transport in graphene nanostructures: Experiments and simulations. Ecs Transactions, 28 (5) (2010), 73. [60] Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano letters, 12 (7) (2012), 3602-8. [61] Late DJ, Liu B, Luo J, Yan A, Matte HR, Grayson M, et al. GaS and GaSe ultrathin layer transistors. Advanced materials, 24 (26) (2012), 3549-54. [62] Hu P, Wen Z, Wang L, Tan P, Xiao K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS nano, 6 (7) (2012), 5988-94. [63] Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, et al. Synthesis and photoresponse of large GaSe atomic layers. Nano letters, 13 (6) (2013), 2777-81. [64] Zhou Y, Nie Y, Liu Y, Yan K, Hong J, Jin C, et al. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS nano, 8 (2) (2014), 1485-90. [65] Liu G, Xia S, Hou B, Gao T, Zhang R. Mechanical stabilities and nonlinear properties of monolayer Gallium selenide under tension. Modern Physics Letters B, 29 (12) (2015), 1550049. [66] Pandey T, Parker DS, Lindsay L. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys. Nanotechnology, 28 (45) (2017), 455706. [67] Late DJ, Liu B, Matte HR, Rao C, Dravid VPJAFM. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. 22 (9) (2012), 1894-905. [68] Ke H, Jimenez AG, Da Silva DR, Mastorakos I. Multiscale modeling of copper and copper/nickel nanofoams under compression. Computational Materials Science, 172 (2020), 109290. [69] Neogi A, Janisch R. Twin-boundary assisted crack tip plasticity and toughening in lamellar γ-TiAl. Acta Materialia, 213 (2021), 116924. [70] Aksoy D, Dingreville R, Spearot DE. Spectrum of embrittling potencies and relation to properties of symmetric-tilt grain boundaries. Acta Materialia, 205 (2021), 116527. [71] Li J, Tian C, Zhang Y, Zhou H, Hu G, Xia R. Structure-property relation of nanoporous graphene membranes. Carbon, 162 (2020), 392-401. [72] Chen M, Hu L, Ramasubramaniam A, Maroudas D. Effects of pore morphology and pore edge termination on the mechanical behavior of graphene nanomeshes. Journal of Applied Physics, 126 (16) (2019), 164306. [73] Han T, Jiang T, Wang X, Li P, Qiao L, Zhang X. Tuning the mechanical properties of nanoporous graphene: a molecular dynamics study. Materials Research Express, 6 (9) (2019), 095619. [74] Zheng B, Gu GX. Tuning the graphene mechanical anisotropy via defect engineering. Carbon, 155 (2019), 697-705. [75] Sharma BB, Parashar A. Mechanical strength of a nanoporous bicrystalline h-BN nanomembrane in a water submerged state. Physical Chemistry Chemical Physics, 22 (36) (2020), 20453-65. [76] Winter N, Becton M, Zhang L, Wang X. Effects of pore design on mechanical properties of nanoporous silicon. Acta Materialia, 124 (2017), 127-36. [77] Garcia AP, Buehler MJ. Bioinspired nanoporous silicon provides great toughness at great deformability. Computational Materials Science, 48 (2) (2010), 303-9. [78] Esfahani MN, Alaca BE, Jabbari M. Mechanical properties of honeycomb nanoporous silicon: a high strength and ductile structure. Nanotechnology, 30 (45) (2019), 455702. [79] Vo T, He B, Blum M, Damone A, Newell P. Molecular scale insight of pore morphology relation with mechanical properties of amorphous silica using ReaxFF. Computational Materials Science, 183 (2020), 109881. [80] Nasr Esfahani M, Jabbari M. Molecular dynamics simulations of deformation mechanisms in the mechanical response of nanoporous gold. Materials Research Express, 13 (9) (2020), 2071. [81] He L, Hadi M, Liu H, Abdolrahim N. Mechanism of coarsening and deformation behavior of nanoporous Cu with varying relative density. Journal of Materials Research, 35 (19) (2020), 2620-8. [82] Neogi A, He L, Abdolrahim N. Atomistic simulations of shock compression of single crystal and core-shell Cu@ Ni nanoporous metals. Journal of Applied Physics, 126 (1) (2019), 015901. [83] Wu C-D, Cheng Y-W, Hong G-W. Mechanical response of nanoporous nickel investigated using molecular dynamics simulations. Journal of Molecular Modeling, 26 (7) (2020), 1-7. [84] Leguillon D, Piat R. Fracture of porous materials – Influence of the pore size. Engineering Fracture Mechanics, 75 (7) (2008), 1840-53. [85] Bai J, Zhong X, Jiang S, Huang Y, Duan X. Graphene nanomesh. Nature nanotechnology, 5 (3) (2010), 190-4. [86] Yuan W, Chen J, Shi G. Nanoporous graphene materials. Materials Today, 17 (2) (2014), 77-85. [87] Patil SP, Rege A, Itskov M, Markert BJJoN-CS. Fracture of silica aerogels: An all-atom simulation study. 498 (2018), 125-9. [88] Dervin S, Dionysiou DD, Pillai SC. 2D nanostructures for water purification: graphene and beyond. Nanoscale, 8 (33) (2016), 15115-31. [89] Oh J, Yoo H, Choi J, Kim JY, Lee DS, Kim MJ, et al. Significantly reduced thermal conductivity and enhanced thermoelectric properties of single-and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy, 35 (2017), 26-35. [90] Ray U, Balasubramanian G. Reduced thermal conductivity of isotope substituted carbon nanomaterials: Nanotube versus graphene nanoribbon. Chemical Physics Letters, 599 (2014), 154-8. [91] Kim D, Lee D, Lee Y, Jeon DY. Work‐function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light‐emitting diodes. Advanced Functional Materials, 23 (40) (2013), 5049-55. [92] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 8 (1) (2008), 323-7. [93] Wei N, Xu L, Wang H-Q, Zheng J-C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology, 22 (10) (2011), 105705. [94] Zhang YY, Pei QX, Wang CM. A molecular dynamics investigation on thermal conductivity of graphynes. Computational Materials Science, 65 (2012), 406-10. [95] Moroni L, De Wijn J, Van Blitterswijk C. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials, 27 (7) (2006), 974-85. [96] Zhao W, Wang Y, Wu Z, Wang W, Bi K, Liang Z, et al. Defect-engineered heat transport in graphene: a route to high efficient thermal rectification. Scientific reports, 5 (1) (2015), 1-11. [97] Zhang Y, Cheng Y, Pei Q, Wang C, Xiang Y. Thermal conductivity of defective graphene. Physics Letters A, 376 (47-48) (2012), 3668-72. [98] Rajasekaran G, Narayanan P, Parashar A. Effect of point and line defects on mechanical and thermal properties of graphene: a review. Critical reviews in solid state and materials sciences, 41 (1) (2016), 47-71. [99] Yarifard M, Davoodi J, Rafii-Tabar H. In-plane thermal conductivity of graphene nanomesh: A molecular dynamics study. Computational Materials Science, 111 (2016), 247-51. [100] Yang L, Chen J, Yang N, Li B. Significant reduction of graphene thermal conductivity by phononic crystal structure. International Journal of Heat and Mass Transfer, 91 (2015), 428-32. [101] Backes C, Abdelkader AM, Alonso C, Andrieux-Ledier A, Arenal R, Azpeitia J, et al. Production and processing of graphene and related materials. 2D Materials, 7 (2) (2020), 022001. [102] Li X, Lin MW, Lin J, Huang B, Puretzky AA, Ma C, et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci Adv, 2 (4) (2016), e1501882. [103] Li X, Basile L, Huang B, Ma C, Lee J, Vlassiouk IV, et al. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. ACS Nano, 9 (8) (2015), 8078-88. [104] Wu CH, Yang CS, Wang YC, Huang HJ, Ho YT, Wei LL, et al. Epitaxial single‐crystal of GaSe epilayers grown on ac‐sapphire substrate by molecular beam epitaxy. physica status solidi (a), 212 (10) (2015), 2201-4. [105] Amin I, Batyrev E, de Vooys A, van der Weijde H, Shiju NR. Covalent polymer functionalization of graphene/graphene oxide and its application as anticorrosion materials. 2D Materials, (2022), [106] Rabet S, Ovesy HR, Ramazani A. Mechanical Properties and Failure Behavior of Hexagonal Boron Nitride–Graphene van der Waals Heterostructures through Molecular Dynamics Simulation. Preprints, (2019), [107] Chowdhury EH, Rahman MH, Fatema S, Islam MM. Investigation of the mechanical properties and fracture mechanisms of graphene/WSe2 vertical heterostructure: A molecular dynamics study. Computational Materials Science, 188 (2021), 110231. [108] Chung J-Y, Sorkin V, Pei Q-X, Chiu C-H, Zhang Y-W. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures. Journal of Physics D: Applied Physics, 50 (34) (2017), 345302. [109] Jiang J-W, Park HS. Mechanical properties of MoS2/graphene heterostructures. Applied Physics Letters, 105 (3) (2014), 033108. [110] Azizi A, Eichfeld S, Geschwind G, Zhang K, Jiang B, Mukherjee D, et al. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. ACS nano, 9 (5) (2015), 4882-90. [111] Si C, Lin Z, Zhou J, Sun Z. Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole. 2D Materials, 4 (1) (2016), 015027. [112] Li X, Basile L, Huang B, Ma C, Lee J, Vlassiouk IV, et al. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS nano, 9 (8) (2015), 8078-88. [113] Chong SK, Long F, Wang G, Lin Y-C, Bhandari S, Shahbazian-Yassar R, et al. Selective growth of two-dimensional heterostructures of gallium selenide on monolayer graphene and the thickness dependent p-and n-type nature. ACS Applied Nano Materials, 1 (7) (2018), 3293-302. [114] Fang T-H, Doan D-Q. Fracture mechanism and temperature/size-dependent thermal conductivity in gallium selenide monolayer. Vacuum, 201 (2022), 111037. [115] Hsu K-C, Fang T-H, Lee C-I, Chen T-H, Hsieh T-H. Mechanistic Insights and Photodegradation of Heterostructure Graphene Oxide/Titanium Dioxide. Topics in Catalysis, 63 (11) (2020), 956-63. [116] Islam M, Mia I, Ahammed S, Stampfl C, Park J. Exceptional in-plane and interfacial thermal transport in graphene/2D-SiC van der Waals heterostructures. Scientific Reports, 10 (1) (2020), 1-16. [117] Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90 (2017), 75-127. [118] Liu B, Meng F, Reddy CD, Baimova JA, Srikanth N, Dmitriev SV, et al. Thermal transport in a graphene–MoS 2 bilayer heterostructure: a molecular dynamics study. RSC advances, 5 (37) (2015), 29193-200. [119] Hong Y, Ju MG, Zhang J, Zeng XC. Phonon thermal transport in a graphene/MoSe 2 van der Waals heterobilayer. Physical Chemistry Chemical Physics, 20 (4) (2018), 2637-45. [120] Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy BJ. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nature Reviews Physics, 1 (2) (2019), 112-25. [121] Alborzi MS, Rajabpour A, Montazeri A. Heat transport in 2D van der Waals heterostructures: An analytical modeling approach. International Journal of Thermal Sciences, 150 (2020), 106237. [122] Yang B, Pan D, Guo X, Hu H, Dai Q. Substrate effects on the near-field radiative heat transfer between bi-planar graphene/hBN heterostructures. International Journal of Thermal Sciences, 176 (2022), 107493. [123] Chen X, Meng R, Jiang J, Liang Q, Yang Q, Tan C, et al. Electronic structure and optical properties of graphene/stanene heterobilayer. Physical Chemistry Chemical Physics, 18 (24) (2016), 16302-9. [124] Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, et al. Stable silicene in graphene/silicene Van der Waals heterostructures. Advanced Materials, 30 (49) (2018), 1804650. [125] Cai Y, Chuu C-P, Wei C, Chou M. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Physical Review B, 88 (24) (2013), 245408. [126] Cai Y, Zhang G, Zhang Y-W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. The Journal of Physical Chemistry C, 119 (24) (2015), 13929-36. [127] Pei Q-X, Sha Z-D, Zhang Y-W. A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon, 49 (14) (2011), 4752-9. [128] Kim K, Artyukhov VI, Regan W, Liu Y, Crommie M, Yakobson BI, et al. Ripping graphene: preferred directions. Nano letters, 12 (1) (2012), 293-7. [129] Huang J, Wong CH. Thickness, chirality and pattern dependence of elastic properties of hydrogen functionalized graphene. Computational Materials Science, 92 (2014), 192-8. [130] Ha J, Park S, Kim D, Ryu J, Lee C, Hong BH, et al. High-performance polymer light emitting diodes with interface-engineered graphene anodes. Organic Electronics, 14 (9) (2013), 2324-30. [131] Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK. The electronic properties of graphene. Reviews of modern physics, 81 (1) (2009), 109. [132] Demirci S, Avazlı N, Durgun E, Cahangirov S. Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95 (11) (2017), 115409. [133] Rybkovskiy D, Arutyunyan N, Orekhov A, Gromchenko I, Vorobiev I, Osadchy A, et al. Size-induced effects in gallium selenide electronic structure: The influence of interlayer interactions. J Physical Review B, 84 (8) (2011), 085314. [134] Cui Y, Peng L, Sun L, Qian Q, Huang Y. Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range. J Journal of Materials Chemistry A, 6 (45) (2018), 22768-77. [135] Wines D, Saritas K, Ataca C. A first-principles Quantum Monte Carlo study of two-dimensional (2D) GaSe. J The Journal of Chemical Physics, 153 (15) (2020), 154704. [136] Yagmurcukardes M, Senger R, Peeters F, Sahin H. Mechanical properties of monolayer GaS and GaSe crystals. Physical Review B, 94 (24) (2016), 245407. [137] Jappor HR, Habeeb MA, Nanostructures. Optical properties of two-dimensional GaS and GaSe monolayers. Physica E: Low-dimensional Systems, 101 (2018), 251-5. [138] Hu L, Wyant S, Muniz AR, Ramasubramaniam A, Maroudas D. Mechanical behavior and fracture of graphene nanomeshes. Journal of Applied Physics, 117 (2) (2015), 024302. [139] Carpenter C, Christmann AM, Hu L, Fampiou I, Muniz AR, Ramasubramaniam A, et al. Elastic properties of graphene nanomeshes. Applied Physics Letters, 104 (14) (2014), 141911. [140] Liu Y, Chen X. Mechanical properties of nanoporous graphene membrane. Journal of Applied Physics, 115 (3) (2014), 034303. [141] Şopu D, Soyarslan C, Sarac B, Bargmann S, Stoica M, Eckert J. Structure-property relationships in nanoporous metallic glasses. Acta materialia, 106 (2016), 199-207. [142] Lim JS, Kim G. First-principles modeling of water permeation through periodically porous graphene derivatives. Journal of colloid and interface science, 538 (2019), 367-76. [143] Hess P. Thickness of elemental and binary single atomic monolayers. Nanoscale Horizons, 5 (3) (2020), 385-99. [144] Kuhn A, Chevy A, Chevalier R. Crystal structure and interatomic distances in GaSe. physica status solidi (a), 31 (2) (1975), 469-75. [145] Vinh LT, Eddrief M, Mahan JE, Vantomme A, Song J, Nicolet M-A. The van der Waals epitaxial growth of GaSe on Si (111). Journal of applied physics, 81 (11) (1997), 7289-94. [146] Pierucci D, Henck H, Avila J, Balan A, Naylor CH, Patriarche G, et al. Band alignment and minigaps in monolayer MoS2-graphene van der Waals heterostructures. Nano letters, 16 (7) (2016), 4054-61. [147] Jiang J-W, Zhou Y-PJapa. Parameterization of Stillinger-Weber potential for two-dimensional atomic crystals. (2017), [148] Tran T-B-T, Fang T-H, Doan D-Q. Fracture mechanism and temperature/size-dependent thermal conductivity in gallium selenide monolayer. Vacuum, 201 (2022), 111037. [149] Ding Z, Pei Q-X, Jiang J-W, Huang W, Zhang Y-W. Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon, 96 (2016), 888-96. [150] Ghasemi H, Rajabpour A, Akbarzadeh AH. Tuning thermal conductivity of porous graphene by pore topology engineering: Comparison of non-equilibrium molecular dynamics and finite element study. International Journal of Heat and Mass Transfer, 123 (2018), 261-71. [151] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117 (1) (1995), 1-19. [152] Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of chemical physics, 112 (14) (2000), 6472-86. [153] Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F. Structure, stability, edge states, and aromaticity of graphene ribbons. Physical review letters, 101 (9) (2008), 096402. [154] Guo J, Chen J, Wang Y. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: A molecular dynamics study. Ceramics International, 46 (8, Part B) (2020), 12686-94. [155] Doan D-Q, Fang T-H, Chen T-H. Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. International Journal of Mechanical Sciences, 185 (2020), 105865. [156] Zehnder AT. Griffith Theory of Fracture. In: Wang QJ, Chung Y-W, editors. Encyclopedia of Tribology. Boston, MA: Springer US; 2013. p. 1570-3. [157] Robert KP. Multiscale Modeling of Fracture in 2D Material [Ph.D.]. Ann Arbor: The George Washington University; 2020. [158] Ghobadi N. A comparative study of the mechanical properties of multilayer MoS2 and graphene/MoS2 heterostructure: effects of temperature, number of layers and stacking order. Current Applied Physics, 17 (11) (2017), 1483-93. [159] Tran TBT, Fang TH, Nguyen VT, Pham VT. Contact strength and deformation of straining free-standing borophene. Computational Materials Science, 197 (2021), 110624. [160] Huang J, Chen S, Wang Z, Kempa K, Wang Y, Jo S, et al. Superplastic carbon nanotubes. Nature, 439 (7074) (2006), 281-. [161] Pham V-T, Fang T-H. Understanding porosity and temperature induced variabilities in interface, mechanical characteristics and thermal conductivity of borophene membranes. Scientific reports, 11 (1) (2021), 1-14. [162] Chang X, Li H, Tang G. Tensile mechanical properties and fracture behavior of monolayer InSe under axial tension. Computational Materials Science, 158 (2019), 340-5. [163] Mandal KC, Choi M, Kang SH, Rauh RD, Wei J, Zhang H, et al. GaSe and GaTe anisotropic layered semiconductors for radiation detectors. Hard X-Ray and Gamma-Ray Detector Physics IX: International Society for Optics and Photonics; 2007. p. 67060E. [164] Allakhverdiev K, Fernelius N, Gashimzade F, Goldstein J, Salaev E, Salaeva Z. Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy. Journal of applied physics, 93 (6) (2003), 3336-9. [165] Lu Q, Gao W, Huang R. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Modelling Simulation in Materials Science 19 (5) (2011), 054006. [166] Lee K-O, Lee S-B. Modeling of materials behavior at various temperatures of hot isostatically pressed superalloys. Materials Science and Engineering: A, 541 (2012), 81-7. [167] Li J, Tian C, Zhang Y, Zhou H, Hu G, Xia R. Structure-property relation of nanoporous graphene membranes. J Carbon, 162 (2020), 392-401. [168] Wei C, Wu C. Nonlinear fracture of two-dimensional transition metal carbides (MXenes). Engineering Fracture Mechanics, 230 (2020), 106978. [169] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties—Second Edition. Published by the Press Syndicate of the University of Cambridge, (1997), [170] Kumar KS. Library-Cellular Solids: Structure and Properties, 2d ed., Loma J. Gibson and Michael F. Ashby,(Cambridge University Press, New York, 1997. MRS Bulletin, 23 (7) (1998), 71-. [171] Li J, Xian Y, Zhou H, Wu R, Hu G, Xia R. Microstructure-sensitive mechanical properties of nanoporous gold: a molecular dynamics study. Modelling Simulation in Materials Science and Engineering, 26 (7) (2018), 075003. [172] Li J, Xian Y, Zhou H, Wu R, Hu G, Xia R. Mechanical properties of nanocrystalline nanoporous gold complicated by variation of grain and ligament: A molecular dynamics simulation. Science China Technological Sciences, 61 (9) (2018), 1353-63. [173] Dewapriya MAN, Srikantha Phani A, Rajapakse RKND. Influence of temperature and free edges on the mechanical properties of graphene. Modelling and Simulation in Materials Science and Engineering, 21 (6) (2013), 065017. [174] Lee C, Wei X, Kysar J, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (New York, NY), 321 (2008), 385-8. [175] Oishi TMT, Malakar P, Islam M, Islam MM. Atomic-scale perspective of mechanical properties and fracture mechanisms of graphene/WS2/graphene heterostructure. Computational Condensed Matter, 29 (2021), e00612. [176] Chitara B, Ya'akobovitz A. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale, 10 (27) (2018), 13022-7. [177] Liu G, Xia S, Hou B, Gao T, Zhang RJMPLB. Mechanical stabilities and nonlinear properties of monolayer Gallium selenide under tension. 29 (12) (2015), 1550049. [178] Shi X, Zhou W, Pang H, Wang Z. Effect of temperature and strain rate on mechanical properties of 63Sn/37Pb solder alloy. Electron Packag, (1999), [179] Zhou Y-P, Jiang J-W. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Scientific reports, 7 (1) (2017), 1-12. [180] Cooper RC, Lee C, Marianetti CA, Wei X, Hone J, Kysar JW. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Physical Review B, 87 (3) (2013), 035423. [181] Hu T, Zhou J, Dong J. Strain induced new phase and indirect–direct band gap transition of monolayer InSe. Physical Chemistry Chemical Physics, 19 (32) (2017), 21722-8. [182] Hu T, Dong J. Structural phase transitions of phosphorene induced by applied strains. Physical Review B, 92 (6) (2015), 064114. [183] Liu F, Ming P, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76 (6) (2007), 064120. [184] Bhattacharyya S, Islam MRI, Patra PK. Multiscale modelling of fracture in graphene sheets. Theoretical and Applied Fracture Mechanics, 122 (2022), 103617. [185] Shao T, Wen B, Melnik R, Yao S, Kawazoe Y, Tian Y. Temperature dependent elastic constants and ultimate strength of graphene and graphyne. The Journal of chemical physics, 137 (19) (2012), 194901. [186] Kalosakas G, Lathiotakis N, Galiotis C, Papagelis K. In-plane force fields and elastic properties of graphene. Journal of Applied Physics, 113 (13) (2013), 134307. [187] Zhou J, Huang R. Internal lattice relaxation of single-layer graphene under in-plane deformation. Journal of the Mechanics and Physics of Solids, 56 (4) (2008), 1609-23. [188] Los J, Fasolino A, Katsnelson M. Scaling behavior and strain dependence of in-plane elastic properties of graphene. Physical review letters, 116 (1) (2016), 015901. [189] Singh S, Espejo C, Romero AH. Structural, electronic, vibrational, and elastic properties of graphene/MoS 2 bilayer heterostructures. Physical Review B, 98 (15) (2018), 155309. [190] Wasalathilake KC, Hu N, Fu S, Zheng J-c, Du A, Yan C. High capacity and mobility in germanium sulfide/graphene (GeS/Gr) van der Waals heterostructure as anode materials for sodium–ion batteries: A first-principles investigation. Applied Surface Science, 536 (2021), 147779. [191] Ma J-J, Zheng J-J, Li W-D, Wang D-H, Wang B-T. Thermal transport properties of monolayer MoSe 2 with defects. Physical Chemistry Chemical Physics, 22 (10) (2020), 5832-8. [192] Pandey T, Parker DS, Lindsay LJN. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys. 28 (45) (2017), 455706. [193] Bazrafshan S, Rajabpour A. Thermal transport engineering in amorphous graphene: Non-equilibrium molecular dynamics study. International Journal of Heat and Mass Transfer, 112 (2017), 379-86. [194] Krishnamoorthy A, Rajak P, Norouzzadeh P, Singh DJ, Kalia RK, Nakano A, et al. Thermal conductivity of MoS2 monolayers from molecular dynamics simulations. AIP Advances, 9 (3) (2019), 035042. [195] Farzadian O, Yousefi F, Spitas C, Kostas KV. Phonon heat transport in two-dimensional phagraphene-graphene superlattice. International Journal of Heat and Mass Transfer, 182 (2022), 121917. [196] Hong Y, Han D, Hou B, Wang X, Zhang J. High-Throughput Computations of Cross-Plane Thermal Conductivity in Multilayer Stanene. International Journal of Heat and Mass Transfer, 171 (2021), 121073. [197] Zhang Y-Y, Pei Q-X, Jiang J-W, Wei N, Zhang Y-W. Thermal conductivities of single-and multi-layer phosphorene: a molecular dynamics study. Nanoscale, 8 (1) (2016), 483-91. [198] Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G, et al. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. 89 (5) (2014), 054310. [199] Shinotsuka H, Tanuma S, Powell CJ, Penn DR. Calculations of electron inelastic mean free paths. XII. Data for 42 inorganic compounds over the 50 eV to 200 keV range with the full Penn algorithm. Surface and Interface Analysis, 51 (4) (2019), 427-57. [200] Majumdar A, Chowdhury S, Ahuja RJNE. Drastic Reduction of Thermal Conductivity in Hexagonal AX (A= Ga, In & Tl, X= S, Se & Te) Monolayers due to Alternative Atomic Configuration. (2021), 106248. [201] Abdullaev N, Aldzhanov M, Kerimova ÉJPotSS. Thermal conductivity of GaS and GaSe layered semiconductors. 44 (2) (2002), 221-2. [202] Xu X, Pereira LFC, Wang Y, Wu J, Zhang K, Zhao X, et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 5 (1) (2014), 3689. [203] Tran T-B-T, Fang T-H, Doan D-Q. Structure-mechanical property relations of nanoporous two-dimensional gallium selenide. Computational Materials Science, 202 (2022), 110985. [204] Akbarzadeh A, Cui Y, Chen Z. Thermal wave: from nonlocal continuum to molecular dynamics. RSC advances, 7 (22) (2017), 13623-36. [205] Wu S, Wang J, Xie H, Guo Z. Interfacial Thermal Conductance across Graphene/MoS2 van der Waals Heterostructures. Energies, 13 (21) (2020), 5851. [206] Rahman MH, Islam MS, Islam MS, Chowdhury EH, Bose P, Jayan R, et al. Phonon thermal conductivity of the stanene/hBN van der Waals heterostructure. Physical Chemistry Chemical Physics, 23 (18) (2021), 11028-38. [207] Faugeras C, Faugeras B, Orlita M, Potemski M, Nair RR, Geim A. Thermal conductivity of graphene in corbino membrane geometry. ACS nano, 4 (4) (2010), 1889-92.
|