[1]Proske, T., Hainer, S., Rezvani, M., & Graubner, C. A. (2013). Eco-friendly concretes with reduced water and cement contents—Mix design principles and laboratory tests. Cement and Concrete Research, 51, 38-46.
[2]Higuchi, T., Morioka, M., Yoshioka, I., & Yokozeki, K. (2014). Development of a new ecological concrete with CO2 emissions below zero. Construction and building materials, 67, 338-343.
[3]Wu, Y., Qiao, W. G., Liu, H. N., Li, Y. Z., Zhang, S., Xi, K., & Zhang, L. (2021). Research on sustainable development of fine-grained material cement slurry. Construction and Building Materials, 302, 124155.
[4]周俊佑,2021,含爐石粉之再生瀝青水泥砂漿工程性質研究,國立高雄科技大學土木工程系,碩士論文。[5]陳世晃、林志棟、徐聖博、簡啓倫,2019,“瀝青刨除料去化-推動冷拌再生瀝青混凝土之應用”,土木水利,第四十六卷,第五期,第43-44頁。
[6]廖文軒,2018,再生瀝青混凝土添加再生劑之成效分析,國立中央大學土木工程學系,碩士論文。[7]遊景年,2017,冷拌再生瀝青混凝土應用於道路管線挖掘回填工程之現地驗證,國立中央大學土木工程學系,碩士論文。
[8]Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and concrete research, 41(12), 1232-1243.
[9]Dutta, D. K., & Borthakur, P. C. (1990). Activation of low lime high alumina granulated blast furnace slag by anhydrite. Cement and Concrete Research, 20(5), 711-722.
[10]Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., & Mäder, U. (2008). Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research, 38(7), 983-992.
[11]Midgley, H. G., & Pettifer, K. (1971). The micro structure of hydrated super sulphated cement. Cement and Concrete Research, 1(1), 101-104.
[12]Singh, M., & Garg, M. (2002). Calcium sulfate hemihydrate activated low heat sulfate resistant cement. Construction and Building Materials, 16(3), 181-186.
[13]Zhao, F. Q., Ni, W., Wang, H. J., & Liu, H. J. (2007). Activated fly ash/slag blended cement. Resources, Conservation and recycling, 52(2), 303-313.
[14]Dung, N. T., Chang, T. P., & Chen, C. T. (2014). Engineering and sulfate resistance properties of slag-CFBC fly ash paste and mortar. Construction and Building Materials, 63, 40-48.
[15]Salain, I. M. A. K., Clastres, P., Bursi, J. M., & Pellissier, C. (2001). Circulating fluidized bed combustion ashes as an activator of ground vitrified blast furnace slag. ACI SPECIAL PUBLICATIONS, 202, 225-244.
[16]Chi, M. (2016). Synthesis and characterization of mortars with circulating fluidized bed combustion fly ash and ground granulated blast-furnace slag. Construction and Building Materials, 123, 565-573.
[17]Zhong, S., Ni, K., & Li, J. (2012). Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder. Waste management, 32(7), 1468-1472.
[18]Nguyen, H. A., Chang, T. P., Shih, J. Y., & Chen, C. T. (2019). Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cement and Concrete Composites, 99, 40-48.
[19]Taher, Z. J., Scalia IV, J., & Bareither, C. A. (2020). Comparative assessment of expansive soil stabilization by commercially available polymers. Transportation Geotechnics, 24, 100387.
[20]Rivera, J. F., Orobio, A., Cristelo, N., & de Gutiérrez, R. M. (2020). Fly ash-based geopolymer as A4 type soil stabiliser. Transportation Geotechnics, 25, 100409.
[21]Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Procedia engineering, 143, 658-665.
[22]Garcés, P., Carrión, M. P., García-Alcocel, E., Payá, J., Monzó, J., & Borrachero, M. V. (2008). Mechanical and physical properties of cement blended with sewage sludge ash. Waste management, 28(12), 2495-2502.
[23]Tahmoorian, F., & Khabbaz, H. (2020). Performance comparison of a MSW settlement prediction model in Tehran landfill. Journal of environmental management, 254, 109809.
[24]Dang, L. C., & Khabbaz, H. (2021, November). A Practical Application Using Industrial Waste for Enhancing the Mechanical Properties of Expansive Soil. In Vietnam Symposium on Advances in Offshore Engineering (pp. 80-88). Springer, Singapore.
[25]Dang, L. C., & Khabbaz, H. (2018, November). Experimental investigation on the compaction and compressible properties of expansive soil reinforced with bagasse fibre and lime. In International Congress and Exhibition" Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology" (pp. 64-78). Springer, Cham.
[26]Dang, L. C. (2019). Enhancing the engineering properties of expansive soil using bagasse ash, bagasse fibre and hydrated lime (Doctoral dissertation).
[27]Dang, L. C., Khabbaz, H., & Ni, B. J. (2021). Improving engineering characteristics of expansive soils using industry waste as a sustainable application for reuse of bagasse ash. Transportation Geotechnics, 31, 100637.
[28]黃兆龍,2006,混凝土性質與行為,詹式書局。
[29]Rashad, A. M. (2018). An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Construction and Building Materials, 187, 89-117.
[30]行政院公共工程委員會,2001,公共工程高爐石混凝土使用手冊。
[31]Chen, W., & Brouwers, H. J. H. (2007). The hydration of slag, part 2: reaction models for blended cement. Journal of Materials Science, 42(2), 444-464.
[32]Afroz, S., Zhang, Y., Nguyen, Q. D., Kim, T., & Castel, A. (2022). Effect of limestone in General Purpose cement on autogenous shrinkage of high strength GGBFS concrete and pastes. Construction and Building Materials, 327, 126949.
[33]Kolani, B., Buffo-Lacarrière, L., Sellier, A., Escadeillas, G., Boutillon, L., & Linger, L. (2012). Hydration of slag-blended cements. Cement and concrete composites, 34(9), 1009-1018.
[34]Suraneni, P., & Weiss, J. (2017). Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cement and Concrete Composites, 83, 273-278.
[35]Kang, S., Kim, J., Moon, C., & Song, M. (2015). Early hydration-retarding mechanism of polymer-modified cement. Materials Research Innovations, 19(sup8), S8-22.
[36]陳瑾弘,2022,不同摻料影響超硫酸鹽水泥基材料工程性質之探討,國立臺灣科技大學營建工程系,碩士論文。[37]孔得人,2020,飛灰影響超硫酸鹽水泥漿體工程及耐久性質之研究,國立臺灣科技大學營建工程系,碩士論文。[38]林伯聰,2020,不同石膏含量對超硫酸鹽水泥混凝土新拌及硬固性質影響之研究,國立臺灣科技大學營建工程系,碩士論文。[39]李火燦,2001,排煙脫硫設備設計、裝機、運轉及維護報告,台灣電力公司。
[40]Lou, W., Guan, B., & Wu, Z. (2011). Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. Journal of thermal analysis and calorimetry, 104(2), 661-669.
[41]Yang, L., Jing, M., Lu, L., Zhu, X., Zhao, P., Chen, M., ... & Liu, J. (2020). Effects of modified materials prepared from wastes on the performance of flue gas desulfurization gypsum-based composite wall materials. Construction and Building Materials, 257, 119519.
[42]Jian, S., Yang, X., Gao, W., Li, B., Gao, X., Huang, W., ... & Lei, Y. (2021). Study on performance and function mechanisms of whisker modified flue gas desulfurization (FGD) gypsum. Construction and Building Materials, 301, 124341.
[43]Wu, Q., Xue, Q., & Yu, Z. (2021). Research status of super sulfate cement. Journal of Cleaner Production, 294, 126228.
[44]EL Alouani M, Alehyen S, EL Achouri M, Taibi M ,2017. “ Potential use of Moroccan fly ash as low cost adsorbent for the removal of two anionic dyes”, Journal of Materials and Environmental Sciences , 8(9), pp.3397-3409.
[45]ASTM C311, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete.
[46]CNS 3036,2009,卜作嵐材料水泥混凝土用飛灰級天然或蝦燒卜作嵐攙和物。
[47]陳聖仁,2021,含飛灰粉之再生瀝青水泥砂漿工程性質研究,國立高雄科技大學土木工程系,碩士論文。[48]蔣秉洋,2020,不鏽鋼還原碴及飛灰部分取代水泥製成水泥(砂)漿工程性質及耐久性之研究,國立高雄科技大學土木工程系,碩士論文。[49]行政院公共工程委員會,1999,公共工程飛灰混凝土使用手冊。