|
1.Bordival, M.; Schmidt, F.M.; Maoult, Y.L.; Velay, V. Optimization of preform temperature distribution for the stretch-blow molding of PET bottles: infrared heating and blowing modeling. Polymer Engineering and Science. 2009, 49,783–793, DOI 10.1002/pen.21296 2.Schmidt, F.M.; Agassant, J.F.; Bellet, M. Experimental study and numerical simulation of the injection stretch/blow molding process. Polym. Eng. Sci. 1998, 38, 1399–1412. DOI 10.1002/pen.10310 3.Boyce, M.C.; Boyce, S.; Socrate, P.G.; Llana. Constitutive model for the finite deformation stress–strain behavior of poly(ethylene terephthalate) above the glass transition. Polymer.2000, 41, 2183–2201. DOI 10.1016/S00323861(99)00406-1 4.Venkateswaran, G.; Cameron, M.R.; Jabarin, S.A. Effects of temperature profiles through preform thickness on the properties of reheat– blown PET containers. Advances in Polymer Technology. 1998, 17, 3, 237–249. DOI 10.1002/(SICI)1098-2329(199823) 5.Luo, Y.M.; Chevalier, L.; Utheza, F.; Nicolas, X. Simplified modeling of convection and radiation heat transfer during infrared heating of PET sheets and preforms. Intern. Polymer Processing. 2015, 30, 5, 554-565. DOI 10.3139/217.3092 6.Nixon, J.; Menary, G. H.; Yan S. Finite element simulations of stretch-blow moulding with experimental validation over a broad process window. Int. J Mater Form, October 2017, 10, Issue 5, 793–809. DOI 10.1007/S12289-016-1320-9 7.Biglione, J.; B’ereaux, Y.; Charmeau, J.Y.; Balcaen, J.; Chhay S. Numerical simulation and optimization of the injection blow molding of polypropylene bottles - a single stage process. Int. J Mater Form, September 2016, 9, 4, 471–487. DOI 10.1007/S12289-015-1234-y 8.Luo, Y.M.; Chevalier, L.; Utheza, F.; Monteiro, E. Numerical simulation of the thermodependant viscohyperelastic behavior of polyethylene terephthalate near the glass transition temperature: Prediction of the self‐heating during biaxial tension test. Polymer Engineering and Science. 2013, 53, 12, 2683-2695. DOI 10.1002/pen.23522 9.Yang, Z.J.; Harkin-Jones, E. M. A.; Armstrong, C.G ; Menary, G.H. Finite element modelling of stretch-blow moulding of PET bottles using Buckley model: Plant tests and effects of process conditions and material parameters. Proc.; Instn Mech. Engrs . 218 Part E: J. Process Mechanical Engineering. 2004, 237-250. DOI 11243/0954408042466990 10.Bordival, M.; Schmidt, F.M.; Maoult, Y. Le; Velay V. Optimization of preform temperature distribution for the stretch-blow molding of PET bottles: infrared heating and blowing modeling. Polym. Eng. Sci. 2009, 49:783–793. DOI 10.1002/pen.21296 11.Mcevoy, J.P.; Armstrong, C.G.; Crawford, R.J. Simulation of the stretch blow molding process of PET bottles. Advances in Polymer Technology. 1998, 17, 4, 339–352 .DOI 10.1002/(SICI)1098-2329(199824) 12.Chevalier, L.; Linhone, C.; Regnier, G. Induced crystallinity during stretch–blow moulding process and its influence on mechanical strength of poly(ethylene terephthalate) bottles. Plastics, Rubber and Composites . 1999, 28, 8, 393-400. DOI 10.1179/146580199101540556. 13.Wang, S.; Makinouchi, A. Three-dimensional viscoplastic FEM simulation of a stretch blow molding process. Advances in Polymer Technology. 1998,17, 3, 189–202.DOI 10.1002/(SICI)1098-2329(199823) 14.Chung, K. Finite element simulation of PET stretch/blow-molding process. J. Mater. Shaping Technol. 1989, 7:229-239. DOI 10.1007/BF02834774 15.Schmidt, F.M.; Agassant , J.F.; Bellet, M.; Desoutter. L. Viscoelastic simulation of PET stretch/blow molding process. J. Non-Newtonian Fluid Mech.1996, 64, 19-42. DOI 10.1016/0377-0257(95)01420-9 16.Diraddo, R.W.; Garcia-Rejon, A. Experimental and Theoretical Investigation of the Inflation of Variable Thickness Parisons. Polymer Engineering and Science, Mid-july . 1994, 34, No. 13. 1080-1089. DOI 10.1002/pen.760341307 17.Lee, D.K.; Soh S. K. Prediction of optimal preform thickness distribution in blow molding. Polymer Engineering and Science, Mid-June 1996, 36, No. 11. 1513-1520. DOI 10.1002/pen.10546 18.Yang, Z. J.; Harkin-Jones, E.; Menary, G.H.; Armstrong, C.G. A non-isothermal finite element model for injection stretch-blow molding of PET bottles with parametric studies. Polymer Engineering and Science, JULY 2004, 44, No. 7, 1379-1390. DOI 10.1002/pen.20133 19.Yang, Z.J.; Harkin-Jones, E.; Menary, G.H. Armstrong, C.G. Coupled temperature–displacement modelling of injection stretch-blow moulding of PET bottles using buckley model. Journal of Materials Processing Technology . 2004,153–154, 20–27. DOI 10.1016/j.jmatprotec.2004.04.203 20.Menary, G.H.; Armstrong, C.G. ; Crawford, R.J.; McEvoy, J.P. Modelling of poly(ethylene terephthalate) in injection stretch–blow moulding. Plastics, Rubber and Composites. 2000, 29, 7. 360-370, DOI 10.1179/146580100101541166. 21.Phami, X.T.; Thibault, F.; Lim,L.T. Modeling and simulation of stretch blow molding of polyethylene terephthalate. Polymer Engineering and Science, Aug. 2004, 44, 8, 1460-1472. DOI 10.1002/pen.20142 22.Chevalier, L. Influence of microstructure evolution on mechanical strength of blown poly(ethylene terephthalate). Plastics, Rubber and Composites. 1999, 28, 8, 385-392. DOI 10.1179/146580199101540547 23.Monteix, S.; Maoult, Y.L.; Schmidt, F.; Arcens, J.P. Quantitative infrared thermography applied to blow moulding process: measurement of a heat transfer coefficient. Quantitative InfraRed Thermography Journal.1:2, 2004, 133-150. DOI 10.3166/qirt.1.133-150. 24.S. Monteix,; F. Schmidt,; Y. Le Maoult,; R. Ben Yedder,; R. W. Diraddo,; D. Laroche. Experimental study and numerical simulation of preform or sheet exposed to infrared radiative heating. Journal of Materials Processing Technology. 2001,119,90-97.DOI 10.1016/s0924-0136(01)00882-2 25.Hsieh, Y.C.; Doan, M.H.; Pham, T.T. The study of infrared heating on PET bottles by experiment and adaptive finite volume method. Advanced Materials Research.2012, 591-593 ,750-753. DOI 10.4028.591-593.750 26.Hsieh, Y.C.; Doan, M.H.; Hung, M.C. Estimation for temperature distribution of PET preform surface under multiple lamps. Applied Mechanics and Materials.2015,764-765, 269-273. DOI 10.4028.764-765 27.Buckley, C.P.; Jones, D.C. Glass-rubber constitutive model for amorphous polymers near the glass transition. Polymer .1995,36 No. 17, 3301-3312. DOI 10.1016/0032-3861(95)99429-x 28.Déloye, E.; Haudin, J.M.; Billon , N. Stretch-blow molding of PET copolymers –influence of molecular architecture. Intern. Polymer Processing XXVII.2012,3,358-369. DOI 10.3139/217.2549. 29.Hsieh, Y.C.; Doan, M.H. Research on both the radiation heating and the cooling system inside the stretch blow molding machine CPSB-LSS12. International journal of advanced manufacturing technology. 2018,98, 9–12, 2357–2364. Oct. DOI 10.1007/s00170-018-2220-6 30.Hsieh, Y.C.; Lin, H.F. The Computation Study of Flow Fields for the Stretch Blow Molding Machine. Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing, Taiwan, November 16~18, 2018. In press. 31.Dahl, R.; Mygind, N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv. Drug Deliv. Rev. 1998, 29, 3–12. [CrossRef] [PubMed] 32.Elad, D.; Wolf, M.; Keck, T. Air-conditioning in the human nasal cavity. Respir. Physiol. Neurobiol. 2008, 163, 121–127. [CrossRef] [PubMed] 33.Empey, D.W. Assessment of the nasal passages. Br. J. Clin. Pharmacol. 1980, 9, 317–319. [CrossRef] [PubMed] 34.Proctor, D.F. The upper airways. I. Nasal physiology and defense of the lungs. Am. Rev. Respir. Dis. 1977, 115, 97–129. [CrossRef] [PubMed] 35.Eccles, R. Nasal airflow in health and disease. Acta Otolaryngol. 2000, 120, 580–595. [CrossRef] [PubMed] 36.Fraser, L.; Kelly, G. An evidence-based approach to the management of the adult with nasal obstruction. Clin. Otolaryngol. 2009, 34, 151–155. [CrossRef] [PubMed] 37.Ardeshirpour, F.; McCarn, K.E.; McKinney, A.M.; Odland, R.M.; Yueh, B.; Hilger, P.A. Computed tomography scan does not correlate with patient experience of nasal obstruction. Laryngoscope. 2016, 126, 820–825. [CrossRef] [PubMed] 38.Moore, M.; Eccles, R. Objective evidence for the efficacy of surgical management of the deviated septum as a treatment for chronic nasal obstruction: A systematic review. Clin. Otolaryngol. 2011, 36, 106–113. [CrossRef] [PubMed] 39.Derin, S.; Sahan, M.; Deveer, M.; Erdogan, S.; Tetiker, H.; Koseoglu, S. The causes of persistent and recurrent nasal obstruction after primary septoplasty. J. Craniofac. Surg. 2016, 27, 828–830. [CrossRef] [PubMed] 40.Kim, S.K.; Na, Y.; Kim, J.I.; Chung, S.K. Patient specific CFD models of nasal airflow: Overview of methods and challenges. J. Biomech. 2013, 46, 299–306. [CrossRef] [PubMed] 41.Rhee, J.S. Measuring outcomes in nasal surgery: Realities and possibilities. Arch. Facial Plast. Surg. 2009, 11, 416–419. [CrossRef] [PubMed] 42.Hilberg, O. Objective measurement of nasal airway dimensions using acoustic rhinometry: Methodological and clinical aspects. Allergy 2002, 57, 5–39. [CrossRef] [PubMed] 43.Doorly, D.J.; Taylor, D.J.; Schroter, R.C. Mechanics of airflow in the human nasal airways. Respir. Physiol. Neurobiol. 2008, 163, 100–110. [CrossRef] [PubMed] 44.Proetz, A.W. Air currents in the upper respiratory tract and their clinical importance. Ann. Otol. Rhinol. Laryngol. 2008, 60, 439–467. [CrossRef] [PubMed] 45.Swift, D.L.; Proctor, D.F. Access of air to the respiratory tract. In Respiratory Defense Mechanisms; Brain, J.D., Proctor, D.F., Reid, L.M., Eds.; Marcel Dekker: New York, NY, USA, 1977; pp. 63–91. 46.Girardin, M.; Bilgen, E.; Arbour, P. Experimental study of velocity fields in a human nasal fossa by laser anemometry. Ann. Otol. Rhinol. Laryngol. 1983, 92, 231–236. [CrossRef] [PubMed] 47.Chung, S.K.; Kim, S.K. Digital particle image velocimetry studies of nasal airflow. Respir. Physiol. Neurobiol. 2008, 163, 111–120. [CrossRef] [PubMed] 48.Elad, D.; Liebenthal, R.; Wening, B.L.; Einav, S. Analysis of air flow patterns in the human nose. Med. Biol. Eng. Comput. 1993, 31, 585–592. [CrossRef] [PubMed] 49.Keyhani, K.; Scherer, P.W.; Mozell, M.M. Numerical simulation of airflow in the human nasal cavity. J Biomech. Eng. 1995, 117, 429–441. [CrossRef] [PubMed] 50.Li, L.; Han, D.; Zhang, L.; Li, Y.; Zang, H.; Wang, T.; Liu, Y. Aerodynamic investigation of the correlation between nasal septal deviation and chronic rhinosinusitis. Laryngoscope. 2012, 122, 1915–1919. [CrossRef] [PubMed] 51.Chen, X.B.; Lee, H.P.; Chong, V.F.; Wang, D.Y. Assessment of septal deviation effects on nasal air flow: A computational fluid dynamics model. Laryngoscope. 2009, 119, 1730–1736. [CrossRef] [PubMed] 52.Liu, T.; Han, D.; Wang, J.; Tan, J.; Zang, H.; Wang, T.; Li, Y.; Cui, S. Effects of septal deviation on the airflow characteristics: Using computational fluid dynamics models. Acta Otolaryngol. 2011, 132, 290–298. [CrossRef] [PubMed] 53.Kim, S.K.; Heo, G.E.; Seo, A.; Na, Y.; Chung, S.K. Correlation between nasal airflow characteristics and clinical relevance of nasal septal deviation to nasal airway obstruction. Respir. Physiol. Neurobiol. 2014, 192, 95–101. [CrossRef] [PubMed] 54.Garcia, G.J.; Rhee, J.S.; Senior, B.A.; Kimbell, J.S. Septal deviation and nasal resistance: An investigation using virtual surgery and computational fluid dynamics. Am. J. Rhinol. Allergy 2010, 24, e46–e53. [CrossRef] [PubMed] 55.Mihaescu, M.; Murugappan, S.; Kalra, M.; Khosla, S.; Gutmark, E. Large Eddy Simulation and Reynolds- Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: An investigation of obstructive sleep apnea. J. Biomech. 2008, 41, 2279–2288. [CrossRef] [PubMed] 56.Larrabee, Y.C.; Kacker, A. Which inferior turbinate reduction technique best decreases nasal obstruction? Laryngoscope. 2014, 124, 814–815. [CrossRef] [PubMed] 57.Hariri, B.M.; Rhee, J.S.; Garcia, G.J. Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Laryngoscope. 2015, 125, 2635–2641. [CrossRef] [PubMed] 58.Jian, H.Z.; Lim, K.M.; Thong, K.T.; Wang, D.Y.; Lee, H.P. Assessment of airflow ventilation in human nasal cavity and maxillary sinus before and after targeted sinonasal surgery: A numerical case study. Respir. Physiol. Neurobiol. 2014, 194, 29–36. [CrossRef] [PubMed] 59.Madani G, Connor S E. Imaging in pulsatile tinnitus. Clinical Radiology, 2009, 64(3):319-32 60.Wang G P, Zeng R, Ma X B, et al. Surgical Treatment of Pulsatile Tinnitus Caused by the Sigmoid Sinus Diverticulum: A Preliminary Study. Medicine, 2015, 94(21):e882. 61.曾嶸, 王國鵬, 龔樹生. 搏動性耳鳴研究進展. 中華耳鼻咽喉頭頸外科雜誌, 2011, 46(11):957-961. 62.Ping G, Wang W Q. Degree of Sigmoid Sinus Compression and the Symptom Relief Using Magnetic Resonance Angiography in Venous Pulsating Tinnitus. Clinical & Experimental Otorhinolaryngology, 2015, 8(2):111-116. 63.Baomin L I, Cao X, Liu X, et al. INTERVENTIONAI DIAGNOSIS AND TREATMENT OF VASCULOGENEIC PULSATILE TINNITUS. 中華耳科學雜誌(英文版), 2014, 9(1):7-15. 64.Langguth B, Kreuzer P M, Kleinjung T, et al. Tinnitus: causes and clinical management. Lancet Neurology, 2013, 12(9):920-930. 65.Lockwood A H, Salvi R J, Burkard R F. Tinnitus. Neurologic Clinics, 2002, 23(3):893-900. 66.Sism A. 搏動性耳鳴.世界醫學雜誌,1999, 3, 65. 67.馬靜,康亞甯,閆磊。頸部彩色多普勒聯合經顱彩色多普勒檢測在椎基底動脈供血不足中的診斷價值。陝西醫學雜誌,2013,42:422-423 68.Terzi S, Arslanoğlu S, Demiray U, et al. Carotid Doppler Ultrasound Evaluation in Patients with Pulsatile Tinnitus. Indian Journal of Otolaryngology & Head & Neck Surgery, 2015, 67(1):43-47. 154(1):89. 69.Kulkarni P S. CFD tools in engineering design studies and medical. Future Medical Engineering Based On Bionanotechnology. 2006:961-972. 70.Kimbell J S, Frank D O, Laud P, et al. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. Journal of Biomechanics, 2013, 46(15):2634-2643. 71.Lim K M, Steele C R. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hearing Research, 2002, 170(1-2):190. 72.Van Canneyt K, De Santis G, Eloot S, et al. Swirlgraft versus conventional straight graft as vascular access: a full CFD-analysis. 2011. 73.Kao E, Kefayati S, Amans M R, et al. Flow patterns in the jugular veins of pulsatile tinnitus patients. Journal of Biomechanics, 2016, 52:61-67. 74.J. T. Oden, Weihan Wu, Mark Ainsworth. An a posterior error estimate for finite element approximations of the Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1994, 111:185-202. 75.D. A. Kay, P. M. Gresho, D. F. Griffiths, D. J. Silvester. Adaptive Time-Stepping for Incompressible Flow Part II: Navier-Stokes Equations. SIAM J. Sci. Comput., 2010, 32:111-128. 76.Jinhee Jeong, Fazle Hussain. On the identification of a vortex. J. Fluid Mech., 1995, 285:69-94.
|