[1]H. Zheng, L.X. Kong, and S. Nahavandi, 2002, “Automatic inspection of metallic surface defects using genetic algorithms,” Journal of Materials Processing Technology, Vol. 125-126, pp. 427-433.
[2]H. Shen, S. X. Li, D. Y. Gu, and H. X. Chang, 2012, “Bearing defect inspection based on machine vision,” Measurement, Vol. 45, pp. 719-733.
[3]G. L. Peng, Z. J. Zhang, and W. Q. Li, 2016, “Computer vision algorithm for measurement and inspection of O-rings,” Measurement, Vol. 94, pp. 828-836.
[4]R. Shanmugamani, M. Sadique, and B. Ramamoorthy, 2015, “Detection and classification of surface defects of gun barrels using computer vision and machine learning,” Measurement, Vol. 60, pp. 222-230.
[5]F. Zhong, C. N. Dai , T. He, and Q. H. Wu, 2007, “One Method of Bearing Outside-Diameter Detection Based on Hough Transform,” IEEE International Conference on Automation and Logistics, Jinan, INSPEC Accession No. 9880714, 2007/08/18~21.
[6]M. Ferguson, R. Ak, Y. T. T. Lee, and K. H. Law, 2017, “Automatic Localization of Casting Defects with Convolutional Neural Networks,” IEEE International Conference on Big Data, pp. 1726-1735.
[7]L. Shang, Q. Yang, J. Wang, S. Li, and W. Lei, 2018, “Detection of Rail Surface Defects Based on CNN Image Recognition and Classification,” International Conference on Advanced Communications Technology, pp. 45-51.
[8]X. Tao, D. Zhang, W. Ma, X. Liu, and D. Xu, 2018, “Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks,” applied sciences, Vol. 8, Issue. 9, 1575.
[9]M. Zhang, J. Wu, H. Lin, P. Yuan, and Y. Song, 2017, “The Application of One-Class Classifier Based on CNN in Image Defect Detection,” Procedia Computer Science, Vol. 114, pp. 341-348.
[10]S. Zhou, Y. Chen, D. Zhang, J. Xie, and Y. Zhou, 2017, “Classification of Surface Defects on Steel Sheetusing Convolutional Neural Networks,” Materials and technology, Vol. 51, pp. 123-131,.
[11]黃成凱、黃緒哲、嚴健榮、古有彬、楊淳宜、陳俊皓,2018,“基於深度學習之工件自動辨識與取料之應用” ,機械工業雜誌,工業技術研究院,第428期,85-95頁。
[12]L. Song, X. Li, Y. Yang, X. Zhu, Q. Guo, and H. Yang, 2018, “Detection of Micro-Defects on Metal Screw Surfaces Based on Deep Convolutional Neural Networks,” sensors, Vol. 18, Issue. 11, 3709.
[13]S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, 2018, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Computer Science, Vol. 132, pp. 679-688.
[14]W. Chen, Y. Gao, L. Gao, and X. Li, 2018, “A New Ensemble Approach based on Deep Convolutional Neural Networks for Steel Surface Defect classification,” Procedia CIRP, Vol. 72, pp. 1069-1072.
[15]蘇詠靖、游原瑋、何昭慶,2018,“結合機器視覺與深度學習之金屬圓柱
表面缺陷檢測系統,”,科儀新知,第215期,財團法人國家實驗研究院。
[16]D. Weimer, Bernd Scholz-Reiter, and M. Shpitalni, 2016, “Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection,” CIRP Annals - Manufacturing Technology, Vol. 65, pp. 417-420.
[17]程冠倫、梁碩芃,2018, “應用類神經網路於刀具磨耗估測,”,機械工業雜誌,第428期,36-42頁,工研院。
[18]張傳育、黃振珂、王薇鈞,2017,“應用深度學習檢查輪胎缺陷,”,全國計算機會議論文集,400-404頁,國立雲林科技大學。
[19]龚丁禧,2014,“基於卷積神經網路的植物葉片分類,” 計算機與現代化,pp.12-15。
[20]石明于、湯燦泰、黃茂裕、黃泰惠、簡珮珊,2018,“人工智慧於PCB 瑕疵覆判之應用,”電工通訊季刊,81-95頁。
[21]李兆健,2017,卷積神經網路應用於中文字手寫風格辨識,碩士論文,國立成功大學工程科學學系。[22]馬朝勛,2019,以深度學習作工業檢測應用,碩士論文,國立雲林科技大學電機工程系。[23]W. Liua, Z. Wanga, X. Liua, N. Zengb, Y. Liuc, and F. E. Alsaadid, 2017, “A survey of deep neural network architectures and their applications,” Neurocomputing, Vol. 234, pp. 11-26.
[24]Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, 2016, “Deep learning for visual understanding : Areview,” Neurocomputing, Vol. 187, pp. 27-48.
[25]V. Natarajan, T. Y. Hung, S. Vaikundam, and L. T. Chia, 2017, “Convolutional Networks for Voting-based Anomaly Classification in Metal Surface Inspection” IEEE International Conference on Industrial Technology, pp. 986-991.
[26]M. Yurtsever, and U. Yurtsever, 2019, “Use of a convolutional neural network for the classification of microbeads in urban wastewater,” Chemosphere, Vol. 216. pp.271-280.
[27]K. Kamnitsas, C. Ledig, V. F. J. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, D. Rueckert, and B. Glocker, 2017, “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation,” Medical Image Analysis, Vol. 36, pp. 61-78.
[28]Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, 2014, “Medical Image Classification with Convolutional Neural Network,” International Conference on Control, Automation, Robotics and Vision, Singapore, 2014/12/10~12.
[29]王健新、楊慧珍、白福忠編著,2013,視覺測量技術基礎,電子工業出版社,pp. 61-80
[30]彩色與數位影位概念,http://163.27.124.4/~chang/graphic/1-2.pdf
[31]A. C. Bovik, 2009, The Essential Guide to Image Processing (Second Edition), Academic Press, pp. 69-95.
[32]Matrox Electronic Systems Ltd., 2005, Matrox Imaging Library User Guide, Matrox Electronic Systems Ltd..
[33]斎藤康毅編著,2017,用Python進行深度學習的基礎理論實作,碁峰資訊股份有限公司,pp.78-82。
[34]林大貴編著,2017,深度學習人工智慧實務應用,博碩文化股份有限公司,pp.20-21。
[35]Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998 “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, Vol. 86, pp. 2278-2324.
[36]吳男爵,2017,具自動化校正與光點引導之三維量測系統應用於金屬製品量測之研究,碩士論文,國立高雄應用科技大學機械工程系研究所。[37]張祐慈,2013,非接觸式表面瑕疵檢測精密度提升之研究,碩士論文,國立高雄應用科技大學機械與精密工程研究所。[38]葉難編著,2015,Python程式設計入門,博碩文化股份有限公司。
[39]周品、何正風編著,2012,MATLAB數值分析,五南圖書出版股份有限公司。