|
[1] V. Sanchez-Romaguera, M.A. Ziai, D. Oyeka, S. Barbosa, J.S. Wheeler, J.C. Batchelor, E.A. Parker, S.G. Yeates, Towards inkjet-printed low cost passive UHF RFID skin mounted tattoo paper tags based on silver nanoparticle inks, Journal of Materials Chemistry C 1(39) (2013) 6395-6402. [2] L. Wang, W. Ma, L. Xu, W. Chen, Y. Zhu, C. Xu, N.A. Kotov, Nanoparticle-based environmental sensors, Materials Science and Engineering: R: Reports 70(3-6) (2010) 265-274. [3] F. Hermerschmidt, D. Burmeister, G. Ligorio, S.M. Pozov, R. Ward, S.A. Choulis, E.J. List‐Kratochvil, Truly low temperature sintering of printed copper ink using formic acid, Advanced Materials Technologies 3(12) (2018) 1800146. [4] L. Zhang, P. Feng, S. Xie, Y. Wang, Z. Ye, Z. Fu, Q. Wang, X. Ma, J. Zhang, P. He, Low-temperature sintering of silver nanoparticles on paper by surface modification, Nanotechnology 30(50) (2019) 505303. [5] H.J. Park, M.K. Cho, Y.W. Jeong, D. Kim, S.Y. Lee, Y. Choi, S. Jeong, Ultrathin plasmonic optical/thermal barrier: flashlight-sintered copper electrodes compatible with polyethylene terephthalate plastic substrates, ACS applied materials & interfaces 9(50) (2017) 43814-43821. [6] S. Magdassi, M. Grouchko, A. Kamyshny, Copper nanoparticles for printed electronics: routes towards achieving oxidation stability, Materials 3(9) (2010) 4626-4638. [7] H. Loulijat, H. Zerradi, S. Mizani, E. mehdi Achhal, A. Dezairi, S. Ouaskit, The behavior of the thermal conductivity near the melting temperature of copper nanoparticle, Journal of Molecular Liquids 211 (2015) 695-704. [8] Y. Zhou, G. Pan, H. Gong, X. Shi, C. Zou, Characterization of sapphire chemical mechanical polishing performances using silica with different sizes and their removal mechanisms, Colloids and Surfaces A: Physicochemical and Engineering Aspects 513 (2017) 153-159. [9] C.Y. Park, B. Choi, Enhanced light extraction from bottom emission oleds by high refractive index nanoparticle scattering layer, Nanomaterials 9(9) (2019) 1241. [10] N. Hoshyar, S. Gray, H. Han, G. Bao, The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction, Nanomedicine 11(6) (2016) 673-692. [11] N. Ibrahim, J.O. Akindoyo, M. Mariatti, Recent development in silver-based ink for flexible electronics, Journal of Science: Advanced Materials and Devices 7(1) (2022) 100395. [12] S. Shang, A. Kunwar, Y. Wang, X. Qi, H. Ma, Y. Wang, Synthesis of Cu@ Ag core–shell nanoparticles for characterization of thermal stability and electric resistivity, Applied Physics A 124 (2018) 1-8. [13] H. Li, L. Zhang, Photocatalytic performance of different exposed crystal facets of BiOCl, Current Opinion in Green and Sustainable Chemistry 6 (2017) 48-56. [14] A.J. Haes, R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors, Analytical and bioanalytical chemistry 379 (2004) 920-930. [15] Y. Hong, Y.-M. Huh, D.S. Yoon, J. Yang, Nanobiosensors based on localized surface plasmon resonance for biomarker detection, Journal of Nanomaterials 2012 (2012) 111-111. [16] C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, H.-Y. Lee, Thermal stability of Cu@ Ag core–shell nanoparticles, Corrosion Science 74 (2013) 123-129. [17] F. Meissner, Mitteilungen aus dem Institut für phys. Chemie der Universität Göttingen. Nr. 8. Über den Einfluß der Zerteilung auf die Schmelztemperatur, Zeitschrift für anorganische und allgemeine Chemie 110(1) (1920) 169-186. [18] V. Samsonov, S. Vasilyev, K. Nebyvalova, I. Talyzin, N.Y. Sdobnyakov, D. Sokolov, M. Alymov, Melting temperature and binding energy of metal nanoparticles: size dependences, interrelation between them, and some correlations with structural stability of nanoclusters, Journal of Nanoparticle Research 22 (2020) 1-15. [19] J. Mittal, K.-L. Lin, Exothermic low temperature sintering of Cu nanoparticles, Materials Characterization 109 (2015) 19-24. [20] Z. Fang, H. Wang, Densification and grain growth during sintering of nanosized particles, International Materials Reviews 53(6) (2008) 326-352. [21] Y. Tian, Z. Jiang, C. Wang, S. Ding, J. Wen, Z. Liu, C. Wang, Sintering mechanism of the Cu–Ag core–shell nanoparticle paste at low temperature in ambient air, Rsc Advances 6(94) (2016) 91783-91790. [22] Z.Z. Fang, Sintering of advanced materials, Elsevier2010. [23] L. Zhan, X. Zhu, X. Qin, M. Wu, X. Li, Sintering mechanism of copper nanoparticle sphere-plate of crystal misalignment: A study by molecular dynamics simulations, Journal of Materials Research and Technology 12 (2021) 668-678. [24] N. Patil, R. Bhaskar, V. Vyavhare, R. Dhadge, V. Khaire, Y. Patil, Over View on Methods of Synthesis of Nanoparticles, International Journal of Current Pharmaceutical Research 13(2) (2021) 11-16. [25] S. Noël, J. Hermann, T. Itina, Investigation of nanoparticle generation during femtosecond laser ablation of metals, Applied Surface Science 253(15) (2007) 6310-6315. [26] N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chemical reviews 114(15) (2014) 7610-7630. [27] D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angewandte Chemie International Edition 44(48) (2005) 7852-7872. [28] C. Janiak, Metal nanoparticle synthesis in ionic liquids, Ionic liquids (ILs) in organometallic catalysis (2015) 17-53. [29] W. Lu, F. Liao, Y. Luo, G. Chang, X. Sun, Hydrothermal synthesis of well-stable silver nanoparticles and their application for enzymeless hydrogen peroxide detection, Electrochimica Acta 56(5) (2011) 2295-2298. [30] Ž. Kaminskienė, I. Prosyčevas, J. Stonkutė, A. Guobienė, Evaluation of optical properties of Ag, Cu, and Co nanoparticles synthesized in organic medium, Acta Physica Polonica A 123(1) (2013) 111-114. [31] J.H. Byeon, Y.-W. Kim, A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation, Ultrasonics sonochemistry 19(1) (2012) 209-215. [32] S. Anandan, F. Grieser, M. Ashokkumar, Sonochemical synthesis of Au− Ag core− shell bimetallic nanoparticles, The Journal of Physical Chemistry C 112(39) (2008) 15102-15105. [33] A. Sarkar, A. Manthiram, Synthesis of Pt@ Cu core− shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells, The Journal of Physical Chemistry C 114(10) (2010) 4725-4732. [34] R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chemical reviews 112(4) (2012) 2373-2433. [35] M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.-L. Peng, R. Zboril, R.S. Varma, Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis, Chemical Society Reviews 44(21) (2015) 7540-7590. [36] G. Yang, Q. Zou, P. Wang, H. Lai, T. Lai, X. Zeng, Z. Li, J. Luo, Y. Zhang, C. Cui, Towards understanding the facile synthesis of well-covered Cu-Ag core-shell nanoparticles from a complexing model, Journal of Alloys and Compounds 874 (2021) 159900. [37] D.V. Goia, E. Matijević, Preparation of monodispersed metal particles, New Journal of Chemistry 22(11) (1998) 1203-1215. [38] S. Tan, X. Zu, G. Yi, X. Liu, Synthesis of highly environmental stable copper–silver core–shell nanoparticles for direct writing flexible electronics, Journal of Materials Science: Materials in Electronics 28 (2017) 15899-15906. [39] F.A. McClary, S. Gaye-Campbell, A.Y. Hai Ting, J.W. Mitchell, Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers, Journal of nanoparticle research 15 (2013) 1-13. [40] J. Yang, Q. Zhang, J.Y. Lee, H.-P. Too, Dissolution–recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates, Journal of colloid and interface science 308(1) (2007) 157-161. [41] A.L. Arduini, M. Garnett, R.C. Thompson, T.C. Wong, Magnetic and Spectral Studies on Cobalt (II) and Copper (II) Salts of Methylsulfuric, Trifluoromethylsulfuric, and Paratolylsulfuric Acids, Canadian Journal of Chemistry 53(24) (1975) 3812-3819. [42] H.-W. Hsieh, Facile preparing method of copper nanoparticles via functionalized surfactants, (2020). [43] M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update, Arabian journal of Chemistry 5(4) (2012) 397-417. [44] W.C. Griffin, Classification of surface-active agents by" HLB", J. Soc. Cosmet. Chem. 1 (1949) 311-325. [45] N. Kohut-Svelko, S. Reynaud, J. François, Synthesis and characterization of polyaniline prepared in the presence of nonionic surfactants in an aqueous dispersion, Synthetic Metals 150(2) (2005) 107-114. [46] W.C. Griffin, Calculation of HLB values of non-ionic surfactants, J. Soc. Cosmet. Chem. 5 (1954) 249-256. [47] Y. Fang, Z. Cheng, S. Wang, H. Hao, L. Li, S. Zhao, X. Chu, R. Zhu, Effects of oxidation on the localized surface plasmon resonance of Cu nanoparticles fabricated via vacuum coating, Vacuum 184 (2021) 109965. [48] Y. Imry, D. Bergman, Critical points and scaling laws for finite systems, Physical Review A 3(4) (1971) 1416. [49] H. Jiang, K.-s. Moon, F. Hua, C. Wong, Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders, Chemistry of Materials 19(18) (2007) 4482-4485. [50] J. Yan, G. Zou, A. Wu, J. Ren, A. Hu, Y.N. Zhou, Improvement of bondability by depressing the inhomogeneous distribution of nanoparticles in a sintering bonding process with silver nanoparticles, Journal of Electronic Materials 41 (2012) 1924-1930. [51] Y. Wang, E. Marques, Mesophase formation and thermal behavior of catanionic mixtures of gemini surfactants with sodium alkylsulfates, Journal of thermal analysis and calorimetry 100(2) (2010) 501-508. [52] S. Liu, R. Tokura, M.T. Nguyen, H. Tsukamoto, T. Yonezawa, Surfactant-stabilized copper paticles for low-temperature sintering: Paste preparation using a milling with small zirconia beads: Effect of pre-treatment with the disperse medium, Advanced Powder Technology 31(11) (2020) 4570-4575.
|