[1] Perenboom, Johannes Antonius Albertus Joseph, Peter Wyder, and Felix Meier. "Electronic properties of small metallic particles." Physics Reports 78.2 (1981): 173-292.
[2] Rokoš, Ondřej, Ron HJ Peerlings, and Jan Zeman. "eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation." Computer Methods in Applied Mechanics and Engineering,320,769-792,2017.
[3] Tadmor, Ellad B., Michael Ortiz, and Rob Phillips. "Quasicontinuum analysis of defects in solids." Philosophical magazine A ,73,1529-1563,1996.
[4] Yu, Wenshan, Zhiqiang Wang, and Shengping Shen. "Edge dislocations interacting with a Σ11 symmetrical grain boundary in copper upon mixed loading: A quasicontinuum method study." Computational Materials Science,137,162-170,2017.
[5] Xu, Taolong, et al. "Quasicontinuum simulation of brittle cracking in single‐crystal material." Crystal Research and Technology52.3 (2017): 1600247.
[6] C. Fang and B. Zhao, “Quasicontinuum investigation of the feedback effects on friction behavior of an abrasive particle over a single crystal aluminum substrate,” Tribology International,98,48-58,2016.
[7] Alizadeh, O., G. Tolooei Eshlaghi, and S. Mohammadi. "Nanoindentation simulation of coated aluminum thin film using quasicontinuum method." Computational Materials Science,111,12-12,2016..
[8] Péron-Lührs, Vincent, Frédéric Sansoz, and Ludovic Noels. "Quasicontinuum study of the shear behavior of defective tilt grain boundaries in Cu." Acta Materialia,64,419-428,2014.
[9] Mei, J. and Ni, Y. "The study of anisotropic behavior of nano-adhesive contact by multiscale simulation." Thin Solid Films,566,45-53,2014.
[10] Jiang, W. G., Xu, S. and Wang, Z. W. "Effect of initial contact location on multiasperity nanocontact:Quasicontinuum simulation." Nano,2014.
[11] Li, X. H., Luskin, M., Ortner, C. and Shapeev, A. V. "Theory-based benchmarking of the blended force-based quasicontinuum Method." Computer methods in Applied Mechanics and engineering,268,763-781,2014.
[12] Lu, H., Ni, Y., Mei, J., Li, J. and Wang, H. "Anisotropic plastic deformation beneath surface step during nanoindentation of FCC Al by multiscale analysis." Computational Materials Science,58,192-200,2012.
[13] Mei, Jifa, Yushan Ni, and Junwan Li. "The effect of crack orientation on fracture behavior of tantalum by multiscale simulation." International Journal of Solids and Structures, 48,3054-3062,2011.
[14] Li, J., Lu, H., Ni, Y. and Mei, J. "Quasicontinuum study the influence of misfit dislocation interactions on nanoindentation." Computational Materials Science,50,3162-3170,2011.
[15] Pen, Hong Min, Qing Shun Bai, and Ying Chun Liang. "Quasicontinuum simulation of effect of crystal orientation and cutting direction of on nanometric cutting of single crystal copper." Key Engineering Materials,431,154-157,2010.
[16] Dobson, Matthew, Mitchell Luskin, and Christoph Ortner. "Sharp stability estimates for the force-based quasicontinuum approximation of homogeneous tensile deformation." Multiscale Modeling & Simulation,8,782-802,2010.
[17] Zhou, Tao, Xinhua Yang, and Chuanyao Chen. "Quasicontinuum simulation of single crystal nano-plate with a mixed-mode crack." International Journal of Solids and Structures,46,1975-1980,2009.
[18] Dupont, V., and F. Sansoz. "Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum." Acta Materialia,56,6013-6026,2008.
[19] Sansoz, F., and J. F. Molinari. "Size and microstructure effects on the mechanical behavior of FCC bicrystals by quasicontinuum method." Thin Solid Films,515,3158-3163,2008.
[20] Zeng, Fanlin, and Yi Sun. "Quasicontinuum simulation of nanoindentation of nickel film." Acta Mechanica Solida Sinica19.4 (2006): 283-288.
[21] Sansoz, F., and J. F. Molinari. "Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study." Acta Materialia, 53,1931-1944,2005.
[22] Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R. and Ortiz, M. "An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method." Journal of the Mechanics and Physics of Solids,47,611-642,1999.
[23] Jiménez-Sáez, J. C., Pérez-Martín, A. C., Said-Ettaoussi, M. and Jiménez-Rodríguez, J. J."Molecular dynamics simulation of Ni cluster deposition on Cu (0 0 1) surfaces." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,228,64-68,2005.
[24] Chocyk, D., and T. Zientarski. "Molecular dynamics simulation of Ni thin films on Cu and Au under nanoindentation. " Vacuum,147,24-30,2018.
[25] Tan, H. F., Zhang, B., Luo, X. M., Zhu, X. F. and Zhang, G. P. "High‐Cycle Fatigue Properties of Ultrafine‐Scale Cu/Ni Laminated Composites." Advanced Engineering Materials,18, 2003-2009, 2016.
[26] Fu, T., Peng, X., Weng, S., Zhao, Y., Gao, F., Deng, L. and Wang, Z. "Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers." Materials Science and Engineering,658,1-7,2016.
[27] Liu, Y., Bufford, D., Wang, H., Sun, C. and Zhang, X. "Mechanical properties of highly textured Cu/Ni multilayers." Acta Materialia 59.5 (2011): 1924-1933.
[28] Ren, F., Zhao, S., Li, W., Tian, B., Yin, L. and Volinsky, A. A. "Theoretical explanation of Ag/Cu and Cu/Ni nanoscale multilayers softening." Materials letters 65.1 (2011): 119-121.
[29] Çölmekçi, Salih, Ali Karpuz, and Hakan Köçkar. "Total film thickness controlled structural and related magnetic properties of sputtered Ni/Cu multilayer thin films." Journal of Magnetism and Magnetic Materials 478 (2019): 48-54.
[30] Razee, S. S. A., and Rula O. Assaad. "Onset of magnetic order in multilayers of Fe and Ni on and embedded in fcc-Cu (100) substrates." Journal of Magnetism and Magnetic Materials 446 (2018): 177-184.
[31] Liu, Y., Yang, K. M., Hay, J., Fu, E. G. and Zhang, X. "The effect of coherent interface on strain-rate sensitivity of highly textured Cu/Ni and Cu/V multilayers." Scripta Materialia 162 (2019): 33-37.
[32] Wang, Y. C., Liang, F., Tan, H. F., Zhang, B. and Zhang, G. P. "Enhancing fatigue strength of high-strength ultrafine-scale Cu/Ni laminated composites." Materials Science and Engineering,714,43-48,2018.
[33] Wang, C., Wang, H., Geng, F., Gang, C., Cui, L. and Zhang, P. "Interactive effects of microstructure and interface on tensile deformation behaviors of Cu/Ni clad foils." Materials Science and Engineering,714,14-24,2018.
[34] Takáts, V., Csik, A., Hakl, J. and Vad, K. "Diffusion induced atomic islands on the surface of Ni/Cu nanolayers." Applied Surface Science,440,275-281,2018.
[35] Bahramian, A., Eyraud, M., Vacandio, F. and Knauth, P. "Cu/Ni/Au multilayers by electrochemistry: a crucial system in electronics-A critical review." Microelectronic Engineering (2019).
[36] Zhang, X., Liu, D., Liu, G., Wang, Z. and Tang, B. "Improvement of the fretting damage resistance of Ti-811 alloy by Cu/Ni multilayer films." Tribology International 44.11 (2011): 1488-1494.
[37] Ma, Y. J., Wei, M. Z., Sun, C., Cao, Z. H. and Meng, X. K. "Length scale effect on the thermal stability of nanoscale Cu/Ag multilayers." Materials Science and Engineering: A 686 (2017): 142-149.
[38] Hu, M., Gao, X., Weng, L., Sun, J. and Liu, W. "The microstructure and improved mechanical properties of Ag/Cu nanoscaled multilayer films deposited by magnetron sputtering." Applied Surface Science 313 (2014): 563-568.
[39] Béjaud, R., J. Durinck, and S. Brochard. "Twin-interface interactions in nanostructured Cu/Ag: molecular dynamics study." Acta Materialia,144,314-324,2018.
[40] Cui, C. B. and Beom, H. G. "Fracture of nanoscale Cu/Ag bimaterials with an interface crack." Computational Materials Science 118 (2016): 133-138.
[41] Yan, K., Yao, W., Cao, J., Li, Y., Zhu, Y. and Cao, L. "Electron migration behavior of Au/Cu multilayer films on Si substrates under UV radiation." Physical Chemistry Chemical Physics 17.7 (2015): 5057-5062.
[42] James, T. E., Hemmingson, S. L., Sellers, J. R. and Campbell, C. T. "Calorimetric measurement of adsorption and adhesion energies of Cu on Pt (111)." Surface Science 657 (2017): 58-62.
[43] Razmara, Naiyer, and Roghayeh Mohammadzadeh. "Effect of nitrogen content on the crack growth behavior in the Fe-N alloy at high temperatures via molecular dynamics simulations." Theoretical and Applied Fracture Mechanics,97,30-37,2018.
[44] Kou, Z., Yang, Y., Yang, L., Zhang, W., Huang, B. and Luo, X. "Deformation twinning in response to cracking in Al: An in situ TEM and molecular dynamics study." Scripta Materialia,145,28-32,2018.
[45] Kou, Z., Yang, Y., Yang, L., Huang, B. and Luo, X. "Twinning-assisted void initiation and crack evolution in Cu thin film: An in situ TEM and molecular dynamics study." Materials Science and Engineering,737,336-340,2018.
[46] Yang, Z., Yang, Q., Zhang, G. and Yang, Y. "Void effect on mechanical properties of copper nanosheets under biaxial tension by molecular dynamics method." Physics Letters,382,781-786,2018.
[47] Hua, J., Liu, Q., Hou, Y., Wu, X. and Zhang, Y. "Growth speed of single edge pre-crack in graphene sheet under tension." Engineering Fracture Mechanics,182,337-355,2017.
[48] Chakraborty, Subhendu, Jiaxi Zhang, and Somnath Ghosh. "Accelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks." Computational Materials Science, 121,23-34,2016.
[49] Shiari, Behrouz, and Ronald E. Miller. "Multiscale modeling of crack initiation and propagation at the nanoscale." Journal of the Mechanics and Physics of Solids,88,35-49,2016
[50] Chandra, S., Kumar, N. N., Samal, M. K., Chavan, V. M. and Patel, R. J. "Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies." Computational Materials Science, 117,518-526,2016.
[51] Fang, W., Xie, H., Yin, F., Li, J. and Fang, Q. "Molecular dynamics simulation of grain boundary geometry on crack propagation of bi-crystal aluminum." Materials Science and Engineering,666,314-319,2016.
[52] Wu, Wen-Ping, Nan-Lin Li, and Yun-Li Li. "Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: effects of temperature." Computational Materials Science,113,203-210,2016.
[53] Sung, Po-Hsien, and Tei-Chen Chen. "Studies of crack growth and propagation of single-crystal nickel by molecular dynamics." Computational Materials Science,102,151-158,2015.
[54] Wu, Wen-Ping, Yun-Li Li, and Xiao-Yu Sun. "Molecular dynamics simulation-based cohesive zone representation of fatigue crack growth in a single crystal nickel." Computational Materials Science,109,66-75,2015.
[55] Li, Y. L., Wu, W. P., Li, N. L. and Qi, Y. "Cohesive zone representation of crack and void growth in single crystal nickel via molecular dynamics simulation. " Computational Materials Science,104,212-218,2015.
[56] Cui, C. B., and H. G. Beom. "Molecular dynamics simulations of edge cracks in copper and aluminum single crystals." Materials Science and Engineering, 609,102-109,2014.
[57] Wu, W. P., and Z. Z. Yao. "Influence of a strain rate and temperature on the crack tip stress and microstructure evolution of monocrystalline nickel: a molecular dynamics simulation." Strength of Materials,46,164-171,2014.
[58] Ma, L., Xiao, S., Deng, H. and Hu, W. "Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading." International Journal of Fatigue,68,253-259, 2014.
[59] Liu, Tianxiang, and Sébastien Groh. "Atomistic modeling of the crack–void interaction in α-Fe." Materials Science and Engineering: A 609 (2014): 255-265.
[60] Petucci, Justin, Carl LeBlond, and Majid Karimi. "Molecular dynamics simulations of brittle fracture in fcc crystalline materials in the presence of defects." Computational Materials Science,86,130-139,2014.
[61] Adlakha, I., M. A. Tschopp, and K. N. Solanki. "The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum." Materials Science and Engineering: A618 (2014): 345-354.
[62] Wang, Y. P., Xu, J. G., Song, H. Y., Sun, J. X. and Zhou, Y. X. "Effect of surface crack on nanoimprint process of Al thin film." Physica B: Condensed Matter,434, 194-199,2014.
[63] Sun, Y., Chen, Y., Liu, Y. and Kang, G. "Molecular dynamics simulation of crack tip processes in ceria and gadolinia doped ceria." Computational Materials Science,51, 181-193,2012.
[64] Tang, T., Kim, S., Jordon, J. B., Horstemeyer, M. F. and Wang, P. T. "Atomistic simulations of fatigue crack growth and the associated fatigue crack tip stress evolution in magnesium single crystals." Computational Materials Science,50,2977-2986, 2011.
[65] Yamakov, V., Saether, E., Phillips, D. R. and Glaessgen, E. H. "Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum." Journal of the Mechanics and Physics of Solids,54,1899-1928,2006.
[66] Potirniche, G. P., et al. "Fatigue damage in nickel and copper single crystals at nanoscale." International Journal of Fatigue27.10-12 (2005): 1179-1185.
[67] Miller, R., Ortiz, M., Phillips, R., Shenoy, V. and Tadmor, E. B. "Quasicontinuum models of fracture and plasticity." Engineering Fracture Mechanics 61.3-4 (1998): 427-444.
[68] 林英志,“多尺度法模擬金屬奈米線接合與機械效應,” 機械工程系碩士班,國立高雄科技大學,2017.[69] Zienkiewicz, Olgierd Cecil, et al. The finite element method. Vol. 3. London: McGraw-hill, 1977.
[70] Weinan, E., and Pingbing Ming. "Cauchy–Born rule and the stability of crystalline solids: static problems." Archive for Rational Mechanics and Analysis 183.2 (2007): 241-297
[71] M.S. Daw, and M.I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Physical Review,29,6443-6453,1984.
[72] Miller, Ronald E., and Ellad B. Tadmor. "The quasicontinuum method: Overview, applications and current directions." Journal of Computer-Aided Materials Design 9.3 (2002): 203-239.
[73] Miller, R., Tadmor, E. B., Phillips, R. and Ortiz, M. "Quasicontinuum simulation of fracture at the atomic scale." Modelling and Simulation in Materials Science and Engineering 6.5 (1998): 607.
[74] Zienkiewicz, Olgierd C., and Jian Z. Zhu. "A simple error estimator and adaptive procedure for practical engineerng analysis." International Journal for Numerical Methods in Engineering 24.2,337-357,1987.
[75] Van Der Walt, C., J. J. Terblans, and H. C. Swart. "Molecular dynamics study of the temperature dependence and surface orientation dependence of the calculated vacancy formation energies of Al, Ni, Cu, Pd, Ag, and Pt." Computational Materials Science 83 (2014): 70-77.
[76] Neogi, Anupam, and Nilanjan Mitra. "Shock induced deformation response of single crystal copper: Effect of crystallographic orientation." Computational Materials Science,135,141-151,2017.
[77] Zhang, Y., Jiang, S., Zhu, X. and Zhao, Y. "A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (0 1 0) twist boundary." Engineering Fracture Mechanics,168,147-159,2016.
[78] 詹奇峰, “應力集中效應對表面疲勞裂縫之影響,” 造船及船舶機械工程學系碩博士班,國立成功大學,台南市,2003.[79] Li, Qiuqi, and Lijian Jiang. "A multiscale virtual element method for elliptic problems in heterogeneous porous media." Journal of Computational Physics 388 , 394-415,2019.
[80] Huang, Q., Kuang, Z., Hu, H. and Potier-Ferry, M. "Multiscale analysis of membrane instability by using the Arlequin method." International Journal of Solids and Structures 162 , 60-75,2019.
[81] Dhia, Hachmi Ben, and Olivier Jamond. "On the use of XFEM within the Arlequin framework for the simulation of crack propagation." Computer Methods in Applied Mechanics and Engineering 199.21-22 , 1403-1414,2010.
[82] Yang, Z., Sun, Y., Liu, Y. and Ma, Q. "A second-order multiscale approach for viscoelastic analysis of statistically inhomogeneous materials." Composite Structures 220 (2019): 550-565.
[83] Zhao, H., Liu, J., Yin, X., Wang, Y. and Huang, D. "A multiscale prediction model and simulation for autogenous shrinkage deformation of early-age cementitious materials." Construction and Building Materials 215 (2019): 482-493.
[84] Wang, J. P., Yue, Z. F., Wen, Z. X., Zhang, D. X. and Liu, C. Y. "Orientation effects on the tensile properties of single crystal nickel with nanovoid: Atomistic simulation." Computational Materials Science 132 (2017): 116-124.
[85] Wu, C. D., Fang, T. H., Lin, Y. J. and Jie, Y. D. "Nanowelding of nickel and copper investigated using quasi-continuum simulations." Multiscale and Multidisciplinary Modeling, Experiments and Design 2.1 (2019): 63-71.
[86] Tran, A. S., Fang, T. H., Tsai, L. R. and Chen, C. H. "Friction and scratch characteristics of textured and rough surfaces using the quasi-continuum method." Journal of Physics and Chemistry of Solids 126 (2019): 180-188.
[87] 林奕辰,“準連續法分析鎳和鐵之裂縫成長與擴展特性,” 機械工程系碩士班,國立高雄科技大學,2017.[88] 陳重熺,“準連續法分析鋁之研磨與壓印特性,” 機械工程系碩士班,國立高雄科技大學,2017.