|
[1]S. Kleszczynski, A. Ladewig, K. Friedberger, J. zur Jacobsmühlen, D. Merhof , and G. Witt, “Position Dependency of Surface Roughness in Parts from Laser Beam Melting Systems,” Proceedings of the 26th Internation Solid Free Form Fabrication (SFF) Symposium, 2015. [2]L. Hitzler, J. Hirsch, M. Merkel, W. Hall, and A. Öchsner, “Position dependent surface quality in Selective Laser Melting,” Materialwissenschaft und Werkstofftechnik, vol. 48, pp. 327-334, 2017. [3]Giovanni Strano, Liang Hao, Richard M. Everson, and Kenneth E. Evans, “Surface roughness analysis, modelling and prediction in selective laser melting,”Journal of Materials Processing Technology ,vol.213, Issue 4, pp.589-597, 2013. [4]A. Safdar, W. He, L.-Y. Wei, A. Snis, and L. Chávez de Paz, “Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V,” Rapid Prototyping Journal, vol. 18, pp. 401-408, 2012. [5]J. K. Algardh et al., “Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron Beam Melting (EBM)®,” Additive Manufacturing, vol. 12, pp. 45-50, 2016. [6]Mohammad A, Mohammed MK, Alahmari AM, “Effect of laser ablation parameters on surface improvement of electron beam melted parts,” Int. J. Adv. Manuf. Tech., pp.1-12, 2016. [7]F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, and P. Fino, “Influence of process parameters on surface roughness of aluminum parts produced by DMLS,” Int. J. Adv. Manuf. Tech., vol. 67, pp.2743-2751, 2013. [8]D. Dai et al., “Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts,” Optics & Laser Technology, vol. 99, pp. 91-100, 2018. [9]P. J. DePond et al., “In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry,” Materials & Design, vol. 154, pp. 347-359, 2018. [10]A. Spierings, N. Herres, and G. Levy, “Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts,” Rapid Prototyping Journal - RAPID PROTOTYPING J, vol. 17, pp. 195-202, 2011. [11]X. Han, H. H. Zhu, X. J. Nie, G. Q. Wang, and X. Y. Zeng, “Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy,” Materials, vol. 11, pp. 392 ,2018. [12]I. Yadroitsev, P. Krakhmalev and I. Yadroitsava, “Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution,” J. Alloys Comp., vol. 583, pp. 404-409, 2011. [13]A. Hussein, L. Hao, C. Yan, and R. Everson, “Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” M Mater. Des., vol.52, pp. 638-647, 2013. [14]Y.L. Li, D.D. Gu, “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder,” Mater. Des., vol. 63, pp.856-867, 2014. [15]黃熾宏,應用AVM於智慧積層製造量測,國立成功大學製造資訊與系統研究所碩士論文,2020。 [16]R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B (Methodological), vol.58, pp.267-288, 1996
|