[1]Chen, J., Wang, B., & Hu, Y. (2017). An existence criterion for low-dimensional materials. Journal of the Mechanics and Physics of Solids, 107, 451-468.
[2]Gupta, A., Sakthivel, T., & Seal, S. (2015). Recent development in 2D materials beyond graphene. Progress in Materials Science, 73, 44-126.
[3]Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., ... & Le Lay, G. (2012). Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical review letters, 108(15), 155501.
[4]Zhu, F. F., Chen, W. J., Xu, Y., Gao, C. L., Guan, D. D., Liu, C. H., ... & Jia, J. F. (2015). Epitaxial growth of two-dimensional stanene. Nature materials, 14(10), 1020.
[5]Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., & Ciraci, S. (2009). Two-and one-dimensional honeycomb structures of silicon and germanium. Physical review letters, 102(23), 236804..
[6]Cretu, O., Komsa, H. P., Lehtinen, O., Algara-Siller, G., Kaiser, U., Suenaga, K., & Krasheninnikov, A. V. (2014). Experimental observation of boron nitride chains. ACS nano, 8(12), 11950-11957.
[7]Rahneshin, V., & Panchapakesan, B. (2017, August). Chromatic photo-thermal actuators based on 2H-MoS2 based nanocomposites. In Nanoengineering: Fabrication, Properties, Optics, and Devices XIV (Vol. 10354, p. 103540U). International Society for Optics and Photonics.
[8]Fan, X., Khosravi, F., Rahneshin, V., Shanmugam, M., Loeian, M., Jasinski, J., ... & Panchapakesan, B. (2015). MoS2 actuators: reversible mechanical responses of MoS2-polymer nanocomposites to photons. Nanotechnology, 26(26), 261001.
[9]Roome, N. J., & Carey, J. D. (2014). Beyond graphene: stable elemental monolayers of silicene and germanene. ACS applied materials & interfaces, 6(10), 7743-7750.
[10]He, Y., Luo, H., Li, H., Sui, Y., Wei, F., Meng, Q., ... & Qi, J. (2017). Graphene-like monolayer low-buckled honeycomb germanium film. Journal of Crystal Growth, 463, 187-193.
[11]Quantum spin Hall effect in silicene and two dimensional germanium Z.Y. Ni, Q.H. Liu, K.C. Tang, J.X. Zheng, J. Zhou, R. Qin, Z.X. Gao, D.P. Yu, J. Lu,Tunable bandgap in silicene and germanene, Nano Lett. 12 (2012) 113–118.
[12]Derivaz, M., Dentel, D., Stephan, R., Hanf, M. C., Mehdaoui, A., Sonnet, P., & Pirri, C. (2015). Continuous germanene layer on Al (111). Nano letters, 15(4), 2510-2516.
[13]Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M., van Houselt, A., Rudenko, A. N., ... & Zandvliet, H. J. (2015). Germanene: the germanium analogue of graphene. Journal of Physics: Condensed matter, 27(44), 443002.
[14]Das, D. K., & Sarkar, J. (2018). Theoretical calculation of atomic and physical properties of some low-dimensional nanomaterials. Materials Today: Proceedings, 5(14), 27982-27988.
[15]Hu, W., & Yang, J. (2016). First-principles study of two-dimensional van der Waals heterojunctions. Computational Materials Science, 112, 518-526.
[16]Kaloni, T. P., & Schwingenschlögl, U. (2013). Stability of germanene under tensile strain. Chemical Physics Letters, 583, 137-140.
[17]Mortazavi, B., Rahaman, O., Makaremi, M., Dianat, A., Cuniberti, G., & Rabczuk, T. (2017). First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E: Low-dimensional Systems and Nanostructures, 87, 228-232.
[18]Sadeghzadeh, S. (2019). Wrinkling C3N nano-grids in uniaxial tensile testing; a molecular dynamics study. Diamond and Related Materials, 92, 130-137.
[19]Ding, N., Wang, H., Liu, L., Guo, W., Chen, X., & Wu, C. M. L. (2018). Effects of mechanical strain on the performance of germanene sheets: Strength, failure behavior, and electronic structure. Journal of Physics and Chemistry of Solids, 113, 201-209.
[20]Behzad, S. (2018). Effect of uni-axial and bi-axial strains and vertical electric field on free standing buckled germanene. Journal of Electron Spectroscopy and Related Phenomena, 229, 13-19.
[21]Le, M. Q. (2018). Fracture of monolayer germanene: A molecular dynamics study. International Journal of Modern Physics B, 32(22), 1850241.
[22]Abdollahi, M., & Davoodi, J. (2017). The influence of covering a germanium nanowire with a single wall carbon nanotube on mechanical properties: A molecular dynamics study. Journal of Applied Physics, 122(3), 035102.
[23]Drissi, L. B., Sadki, K., & Kourra, M. H. (2017). Mechanical response of SiC sheet under strain. Materials Chemistry and Physics, 201, 199-206.
[24]Abhinav, E. M., Chandrasekaran, G., & Raja, S. K. (2017). Strain and deformations engineered germanene bilayer double gate-field effect transistor by first principles. Applied Surface Science, 418, 308-311.
[25]Arjmand, T., Tagani, M. B., & Soleimani, H. R. (2018). Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study. Superlattices and Microstructures, 113, 657-666.
[26]John, R., & Merlin, B. (2016). Theoretical investigation of structural, electronic, and mechanical properties of two dimensional C, Si, Ge, Sn. Crystal Structure Theory and Applications, 5(03), 43.
[27]Sohbatzadeh, Z., Eivari, H. A., & Fakhrabad, D. V. (2018). Formation energy and some mechanical properties of hydrogenated hexagonal monolayer of GeC. Physica B: Condensed Matter, 547, 88-91.
[28]Das, D. K., Sarkar, J., & Singh, S. K. (2018). Effect of sample size, temperature and strain velocity on mechanical properties of plumbene by tensile loading along longitudinal direction: A molecular dynamics study. Computational Materials Science, 151, 196-203.
[29]He, Y., Li, H., Sui, Y., Wei, F., Meng, Q., & Qi, J. (2017). Polymorphic germanium films forming in slit nanopore. Computational Materials Science, 127, 187-193.
[30]Wang, L., Xu, J., & Wang, J. (2018). A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction. International Journal of Heat and Mass Transfer, 118, 1284-1292.
[31]Shomali, Z., & Asgari, R. (2018). Effects of low-dimensional material channels on energy consumption of nano-devices. International Communications in Heat and Mass Transfer, 94, 77-84.
[32]DENG, Shikai; SUMANT, Anirudha V.; BERRY, Vikas. (2018). Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today,
[33]Pozhilov, A. A., Zaitsev, D. K., Smirnov, E. M., & Smirnovsky, A. A. (2017). Numerical simulation of heat and mass transfer in a 3D model of a loop heat pipe evaporator. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 3(3), 210-217.
[34]Balatero, M. A., Paylaga, G. J., Paylaga, N. T., & Bantaculo, R. V. (2015). Molecular Dynamics Simulations of Thermal Conductivity of Germanene Nanoribbons (GeNR) with Armchair and Zigzag Chirality. In Applied Mechanics and Materials (Vol. 772, pp. 67-71).
[35]Wierzbicki, M. (2017). Thermoelectric properties of magnetic configurations of graphene-like nanoribbons in the presence of Rashba and spin–orbit interactions. Physica E: Low-dimensional Systems and Nanostructures, 87, 220-227.
[36]Majidi, Danial, and Rahim Faez. "Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons." Physica E: Low-dimensional Systems and Nanostructures 86 (2017): 175-183.
[37]Zaveh, S. J., Roknabadi, M. R., Morshedloo, T., & Modarresi, M. (2016). Electronic and thermal properties of germanene and stanene by first-principles calculations. Superlattices and Microstructures, 91, 383-390.
[38]Xingli, Z., Cuizhi, G., & Guoqiang, W. (2017). Strain Effect Analysis on Thermal Conductivity of Ge Thin Films. Rare Metal Materials and Engineering, 46(2), 370-374.
[39]Das, S., Mojumder, S., Rakib, T., Islam, M. M., & Motalab, M. (2019). Atomistic insights into mechanical and thermal properties of stanene with defects. Physica B: Condensed Matter, 553, 127-136.
[40]Aprea, C., Greco, A., Maiorino, A., & Masselli, C. (2017). A two-dimensional model of a solid-state regenerator based on combined electrocaloric-elastocaloric effect. Energy Procedia, 126, 337-344.
[41]Zhang, C. W., Zhou, H., Zeng, Y., Zheng, L., Zhan, Y. L., & Bi, K. D. (2019). A reduction of thermal conductivity of non-periodic Si/Ge superlattice nanowire: Molecular dynamics simulation. International Journal of Heat and Mass Transfer, 132, 681-688.
[42]Liang, P., Liu, Y., Xing, S., Shu, H., & Tai, B. (2016). Electronic and magnetic properties of germanene: surface functionalization and strain effects. Solid State Communications, 226, 19-24.
[43]Shiraz, Arash Karaei, and Arash Yazdanpanah Goharrizi. (2018). "The electronic and optical properties of armchair germanene nanoribbons." Physica E: Low-dimensional Systems and Nanostructures.
[44]Kazemlou, V., & Phirouznia, A. (2019). Influence of compression strains on photon absorption of silicene and germanene. Superlattices and Microstructures, 128, 23-29.
[45]Shiraz, A. K., Goharrizi, A. Y., & Hamidi, S. M. (2019). The electronic and optical properties of armchair germanene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures, 107, 150-153
[46]Song, N., Ling, H., Wang, Y., Zhang, L., Yang, Y., & Jia, Y. (2019). Intriguing electronic properties of germanene/indium selenide and antimonene/indium selenide heterostructures. Journal of Solid State Chemistry, 269, 513-520.
[47]Padilha, J. E., & Pontes, R. B. (2016). Electronic and transport properties of structural defects in monolayer germanene: an ab initio investigation. Solid State Communications, 225, 38-43.
[48]Sun, M., Ren, Q., Wang, S., Zhang, Y., Du, Y., Yu, J., & Tang, W. (2016). Magnetism in transition-metal-doped germanene: a first-principles study. Computational Materials Science, 118, 112-116.
[49]John, Rita, and Benita Merlin. (2017). "Optical properties of graphene, silicene, germanene, and stanene from IR to far UV–a first principles study." Journal of Physics and Chemistry of Solids 110: 307-315.
[50]John, R., & Merlin, B. (2016). Theoretical investigation of structural, electronic, and mechanical properties of two dimensional C, Si, Ge, Sn. Crystal Structure Theory and Applications, 5(03), 43.
[51]Dimoulas, A. (2015). Silicene and germanene: Silicon and germanium in the “flatland”. Microelectronic engineering, 131, 68-78.
[52]NE, M. O., Boujnah, M., Benyoussef, A., & El Kenz, A. (2018). Comparative study of electronic and optical properties of graphene and germanene: DFT study. Optik, 158, 693-698.
[53]Sun, M., Ren, Q., Wang, S., Zhang, Y., Du, Y., Yu, J., & Tang, W. (2016). Magnetism in transition-metal-doped germanene: a first-principles study. Computational Materials Science, 118, 112-116.
[54]Dhar, N., Bandyopadhyay, A., & Jana, D. (2017). Tuning electronic, magnetic and optical properties of germanene nanosheet with site dependent adatoms arsenic and gallium: a first principles study. Current Applied Physics, 17(4), 573-583.
[55]Monshi, M. M., Aghaei, S. M., & Calizo, I. (2017). Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules. Surface Science, 665, 96-102.
[56]Gablech, I., Pekárek, J., Klempa, J., Svatoš, V., Sajedi-Moghaddam, A., Neužil, P., & Pumera, M. (2018). Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC Trends in Analytical Chemistry, 105, 251-262.
[57]Chandiramouli, R. (2017). Structural and electronic properties of germanane nanosheet upon molecular adsorption of alcohol and aldehyde molecules: DFT comparative analysis. Journal of Molecular Liquids, 242, 571-579.
[58]Srimathi, U., Nagarajan, V., & Chandiramouli, R. (2018). Detection of nucleobases using 2D germanane nanosheet: a first-principles study. Computational and Theoretical Chemistry, 1130, 68-76.
[59]Sharma, D. K., Kumar, S., Laref, A., & Auluck, S. (2018). Mono and bi-layer germanene as prospective anode material for Li-ion batteries: A first-principles study. Computational Condensed Matter, 16, e00314.
[60]Mortazavi, B., Dianat, A., Cuniberti, G., & Rabczuk, T. (2016). Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation. Electrochimica Acta, 213, 865-870.
[61]Ladha, D. G. (2019). A review on density functional theory–based study on two-dimensional materials used in batteries. Materials Today Chemistry, 11, 94-111.
[62]Srimathi, U., Nagarajan, V., & Chandiramouli, R. (2019). Germanane nanosheet as a novel biosensor for liver cirrhosis based on adsorption of biomarker volatiles–A DFT study. Applied Surface Science, 475, 990-998.
[63]Burghaus, U. (2019). Gas-surface interactions on two-dimensional crystals. Surface Science Reports.
[64]Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. The Journal of chemical physics, 27(5), 1208-1209.
[65]Pidd, Michael. Computer simulation in management science. John Wiley & Sons, Inc., 1988.
[66]Smith, R. (Ed.). (2005). Atomicand ion collisions in solids and at surfaces: theory, simulation and applications. Cambridge University Press.
[67]Xue, G. L. (1997). Minimum inter-particle distance at global minimizers of Lennard-Jones clusters. Journal of Global Optimization, 11(1), 83-90.
[68]Cotterill, R. M. J., & Doyama, M. (1968). ENERGIES AND ATOMIC CONFIGURATIONS OF LINE DEFECTS AND PLANE DEFECTS IN FCC METALS. Argonne National Lab., Ill..
[69]Mahdizadeh, S. J., & Akhlamadi, G. (2017). Optimized Tersoff empirical potential for germanene. Journal of Molecular Graphics and Modelling, 72, 1-5.
[70]Lindsay, L., & Broido, D. A. (2010). Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Physical Review B, 81(20), 205441.
[71]Thijssen, J. (2007). Computational physics. Cambridge university press.
[72]Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1), 511-519.
[73]Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695.
[74]Kresse, G., & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251.
[75]Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159(1), 98.
[76]Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Prentice Hall PTR.
[77]Stone, A. J., & Wales, D. J. (1986). Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters, 128(5-6), 501-503.
[78]Nardelli, M. B., Yakobson, B. I., & Bernholc, J. (1998). Mechanism of strain release in carbon nanotubes. Physical review B, 57(8), R4277.
[79]Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19.
[80]F. Bechstedt, L. Matthes, P. Gori and O. Pulci, Applied Physics Letter 100, 261906 (2012),p.1
[81]Yan, J. A., Stein, R., Schaefer, D. M., Wang, X. Q., & Chou, M. Y. (2013). Electron-phonon coupling in two-dimensional silicene and germanene. Physical Review B, 88(12), 121403.
[82]Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., ... & Lu, J. (2011). Tunable bandgap in silicene and germanene. Nano Letters, 12(1), 113-118.
[83]Che, J., Cagin, T., & Goddard III, W. A. (2000). Thermal conductivity of carbon nanotubes. Nanotechnology, 11(2), 65.
[84]Hu, J., Ruan, X., Jiang, Z., & Chen, Y. P. (2009, September). Molecular dynamics calculation of thermal conductivity of graphene nanoribbons. In AIP Conference Proceedings (Vol. 1173, No. 1, pp. 135-138). AIP.
[85]G. Rangrajan, Lattice vibrations(continued) Phonon thermal conductivity-worked examples,Condensed matter physics.
[86]Zhang Bin, Zhang Xiaoyong, Li Chao. (2012). Rare Metal Materials and Engineering, 41(6): 1010-1015
[87]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
[88]Rajan, A. G., Silmore, K. S., Swett, J., Robertson, A. W., Warner, J. H., Blankschtein, D., & Strano, M. S. (2019). Addressing the isomer cataloguing problem for nanopores in two-dimensional materials. Nature materials, 18(2), 129.
[89]王貫宇, (2017)“分子動力學研究碲化鉍薄膜之熱傳導與機械特性,” 國立高雄應用科技大學碩士論文[90]李哲緯, (2017) “石墨烯量子點與碳複合結構之熱傳導與力學特性分析,” 國立高雄應用科技大學碩士論文[91]宋柏賢,(2012)“鎳鈦形狀記憶合金之微奈米力學特性分析,” 國立高雄應用科技大學碩士論文