|
Adamus, G., Sikorska, W., Janeczek, H., Kwiecień, M., Sobota, M., & Kowalczuk, M. (2012). Novel block copolymers of atactic PHB with natural PHA for cardiovascular engineering: Synthesis and characterization. European Polymer Journal, 48(3), 621-631. An, D., Ye, A., Deng, W., Zhang, Q., & Wang, Y. (2012). Selective Conversion of Cellobiose and Cellulose into Gluconic Acid in Water in the Presence of Oxygen, Catalyzed by Polyoxometalate‐Supported Gold Nanoparticles. Chemistry–A European Journal, 18(10), 2938-2947. Avella, M., La Rota, G., Martuscelli, E., Raimo, M., Sadocco, P., Elegir, G., & Riva, R. (2000). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour. Journal of Materials Science, 35(4), 829-836. Barham, P. J., Keller, A., Otun, E. L., & Holmes, P. A. (1984). Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science, 19(9), 2781-2794. Barnes, S. J. (2019). Understanding plastics pollution: The role of economic development and technological research. Environmental pollution, 249, 812-821. Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. A. (2014). Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Canete-Rodriguez, A. M., Santos-Duenas, I. M., Jimenez-Hornero, J. E., Ehrenreich, A., Liebl, W., & Garcia-Garcia, I. (2016). Gluconic acid: properties, production methods and applications—an excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochemistry, 51(12), 1891-1903. Chen, G. Q., Hajnal, I., Wu, H., Lv, L., & Ye, J. (2015). Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends in biotechnology, 33(10), 565-574. Ferre-Guell, A., & Winterburn, J. (2018). Biosynthesis and characterization of polyhydroxyalkanoates with controlled composition and microstructure. Biomacromolecules, 19(3), 996-1005. Han, J., Wu, L. P., Hou, J., Zhao, D., & Xiang, H. (2015). Biosynthesis, characterization, and hemostasis potential of tailor-made poly (3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules, 16(2), 578-588. Gunaratne, L. M. W. K., Shanks, R. A., & Amarasinghe, G. (2004). Thermal history effects on crystallisation and melting of poly (3-hydroxybutyrate). Thermochimica Acta, 423(1-2), 127-135. Kamiya, N., Yamamoto, Y., Inoue, Y., Chujo, R., & Doi, Y. (1989). Microstructure of bacterially synthesized poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules, 22(4), 1676-1682. Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current opinion in microbiology, 13(3), 321-326. Khanna, S., & Srivastava, A. K. (2009). On-line characterization of physiological state in poly (β-hydroxybutyrate) production by Wautersia eutropha. Applied biochemistry and biotechnology, 157(2), 237-243. Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. Li, S. Y., Dong, C. L., Wang, S. Y., Ye, H. M., & Chen, G. Q. (2011). Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Applied microbiology and biotechnology, 90(2), 659-669. Moore, C. J. (2008). Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental research, 108(2), 131-139. Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous?. Microbiological research, 192, 271-282. Muhammadi, Shabina, Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8(3-4), 56-77. Pederson, E. N., McChalicher, C. W., & Srienc, F. (2006). Bacterial synthesis of PHA block copolymers. Biomacromolecules, 7(6), 1904-1911. Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration & Biodegradation, 126, 45-56. Ramachandran, S., Nair, S., Larroche, C., & Pandey, A. (2017). Gluconic Acid. In Current Developments in Biotechnology and Bioengineering (pp. 577-599). Elsevier. Reddy, C. S. K., Ghai, R., & Kalia, V. (2003). Polyhydroxyalkanoates: an overview. Bioresource technology, 87(2), 137-146. Sheu, D. S., Chen, Y. L. L., Jhuang, W. J., Chen, H. Y., & Jane, W. N. (2018). Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. International journal of biological macromolecules, 118, 1558-1564. Singh, M., Kumar, P., Ray, S., & Kalia, V. C. (2015). Challenges and opportunities for customizing polyhydroxyalkanoates. Indian journal of microbiology, 55(3), 235-249. Smith, A. D., Landoll, M., Falls, M., & Holtzapple, M. T. (2010). Chemical production from lignocellulosic biomass: thermochemical, sugar and carboxylate platforms. In Bioalcohol Production (pp. 391-414). Woodhead Publishing. Steinbüchel, A., & Lütke-Eversloh, T. (2003). Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical engineering journal, 16(2), 81-96. Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in polymer science, 25(10), 1503-1555. Tortajada, M., Ferreira, L., & Prieto, M. A. (2013). Second-generation functionalized mediumchain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Urtuvia, V., Villegas, P., González, M., & Seeger, M. (2014). Bacterial production of the biodegradable plastics polyhydroxyalkanoates. International journal of biological macromolecules, 70, 208-213. Wang, Q., Tappel, R. C., Zhu, C., & Nomura, C. T. (2012). Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Applied and environmental microbiology, 78(2), 519-527. Wilson, K., & Lee, A. F. (2014). Bio-based chemicals from biorefining: carbohydrate conversion and utilisation. In Advances in Biorefineries (pp. 624-658). Woodhead Publishing. Xu, P., Feng, Y., Ma, P., Chen, Y., Dong, W., & Chen, M. (2017). Crystallization behaviours of bacterially synthesized poly (hydroxyalkanoate) s in the presence of oxalamide compounds with different configurations. International Journal of Biological Macromolecules, 104, 624-630. Žagar, E., Kržan, A., Adamus, G., & Kowalczuk, M. (2006). Sequence distribution in microbial poly (3-hydroxybutyrate-co-3-hydroxyvalerate) co-polyesters determined by NMR and MS. Biomacromolecules, 7(7), 2210-2216. Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G. Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144-150.
|