|
[1]曾勖華,2015,用戶中心式軟體定義網路與資源虛擬化於數位內容傳播之應用,國立高雄第一科技大學 [2]陳俊廷,2013,以使用者為中心之階層式行動多雲網路模糊控制及其矽智財實現,國立高雄第一科技大學 [3]WANG, Shulan, et al. An efficient file hierarchy attribute-based encryption scheme in cloud computing. IEEE Transactions on Information Forensics and Security, 2016, 11.6: 1265-1277. [4]PERALTA, Goiuri, et al. Fog computing based efficient IoT scheme for the Industry 4.0. In: 2017 IEEE international workshop of electronics, control, measurement, signals and their application to mechatronics (ECMSM). IEEE, 2017. p. 1-6. [5]WAN, Jiafu, et al. Fog computing for energy-aware load balancing and scheduling in smart factory. IEEE Transactions on Industrial Informatics, 2018, 14.10: 4548-4556. [6]BONOMI, Flavio, et al. Fog computing: A platform for internet of things and analytics. In: Big data and internet of things: A roadmap for smart environments. Springer, Cham, 2014. p. 169-186. [7]MA, Xunguang, et al. FPGA-Based Rapid Electroencephalography Signal Classification System. In: 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT). IEEE, 2019. p. 223-227. [8]AHMED, Hossam O.; GHONEIMA, Maged; DESSOUKY, Mohamed. Concurrent MAC unit design using VHDL for deep learning networks on FPGA. In: 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). IEEE, 2018. p. 31-36. [9]BOZORGCHENANI, Arash; TARCHI, Daniele; CORAZZA, Giovanni Emanuele. An energy-aware offloading clustering approach (EAOCA) in fog computing. In: 2017 International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2017. p. 390-395. [10]AIMAR, Alessandro, et al. Nullhop: A flexible convolutional neural network accelerator based on sparse representations of feature maps. IEEE transactions on neural networks and learning systems, 2018, 30.3: 644-656. [11]BERTEN DSP S.L.,GPU vs FPGA Performance Comparison,http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Comparison_v1.0.pdf [12]GPU GFLOPS,https://gflops.surge.sh/ [13]AMD Radeon and NVIDIA GeForce FP32/FP64 GFLOPS Table,https://www.geeks3d.com/20140305/amd-radeon-and-nvidia-geforce-fp32-fp64-gflops-table-computing/ [14]Wikipedia,MQTT,https://en.wikipedia.org/wiki/MQTT [15]Wikipedia,人工神經網路,https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C [16]Wikipedia,Sigmoid function,https://en.wikipedia.org/wiki/Sigmoid_function [17]Wikipedia,每秒浮點數運算次數,https://zh.wikipedia.org/wiki/%E6%AF%8F%E7%A7%92%E6%B5%AE%E9%BB%9E%E9%81%8B%E7%AE%97%E6%AC%A1%E6%95%B8 [18]陳朝烈, 陳慎謙, 林志勳, 賴建豪,「動態叢聚使用者端裝置形成雲端伺服器方法及其系統」,中華民國發明專利:發明字第I459209號,NSC100-2221-E-327-002。 [19]NVIDIA,Whitepaper NVIDIA Tegra X1,https://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
|