|
[1] S. Bai, J. Z. Kolter and V. Koltun, 2018, “An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.” arXiv1803.01271, Mar. [2] C. L. P. Chen and Z. Liu, 2018, “Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture.” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 1, pp. 10-24, Jan, doi: 10.1109/TNNLS.2017.2716952. [3] C. L. P. Chen, Z. Liu and S. Feng, 2019, “Universal Approximation Capability of Broad Learning System and Its Structural Variations.” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 4, pp. 1191-1204, April, doi: 10.1109/TNNLS.2018.2866622. [4] M. T. Ribeiro, S. Singh and C. Guestrin, 2016, “'Why Should I Trust You?': Explaining the Predictions of Any Classifier.” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 1135–1144. doi: 10.1145/2939672.2939778. [5] S. M. Lundberg and S.-I. Lee, 2017, “A Unified Approach to Interpreting Model Predictions.” in Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, pp. 4768–4777. [6] H. -J. Chang and J. -T. Jen, 2022, "Comparing the Prediction Accuracy with Passenger Time Series of Taipei MRT under Different Deep RNNs." in 2022 IET International Conference on Engineering Technologies and Applications, Changhua, Taiwan, pp. 1-2, doi: 10.1109/IET-ICETA56553.2022.9971668. [7] S. Hochreiter and J. Schmidhuber, 1997, “Long Short-Term Memory.” Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 15, doi: 10.1162/neco.1997.9.8.1735. [8] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, 2014, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” arXiv1412.3555, Dec. [9]CWB Observation Data Inquire Service, July 20, 2023. [Online]. Available: https://codis.cwb.gov.tw/StationData [10]Yahoo finance, July 20, 2023. [Online]. Available: https://finance.yahoo.com/quote/0050.TW/history?p=0050.TW [11]Yahoo finance, July 20, 2023. [Online]. Available: https://finance.yahoo.com/quote/%5EDJI?p=^DJI&.tsrc=fin-srch [12] F. Doshi-Velez and B. Kim, 2017, “Towards a Rigorous Science of Interpretable Machine learning.” arXiv1702.08608, Feb. [13]Explainable Artificial Intelligence (XAI), July 20, 2023. [Online]. Available: https://www.darpa.mil/program/explainable-artificial-intelligence [14] G. E. P. Box and G. Jenkins, 1990, Time Series Analysis, Forecasting and Control. Holden-Day, Inc., USA. [15] S. M. Idrees, M. A. Alam and P. Agarwal, 2019, "A Prediction Approach for Stock Market Volatility Based on Time Series Data." IEEE Access, vol. 7, pp. 17287-17298, doi: 10.1109/ACCESS.2019.2895252. [16] Y. Lv, Y. Duan, W. Kang, Z. Li and F. -Y. Wang, 2015, "Traffic Flow Prediction with Big Data: A Deep Learning Approach." IEEE Transactions on Intelligent Transportation Systems, 16(2), 865-873. https://doi.org/10.1109/TITS.2014.2345663. [17] M. Yu, F. Xu, W. Hu, J. Sun and G. Cervone, 2021, "Using Long Short-Term Memory (LSTM) and Internet of Things (IoT) for Localized Surface Temperature Forecasting in an Urban Environment." IEEE Access, 9, 137406-137418. https://doi.org/10.1109/ACCESS.2021.3116809. [18] K. He, X. Zhang, S. Ren and J. Sun, 2016, "Deep Residual Learning for Image Recognition." Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770-778. https://doi.org/10.1109/CVPR.2016.90. [19] C. L. P. Chen and J. Z. Wan, 1999, "A Rapid Learning and Dynamic Stepwise Updating Algorithm for Flat Neural Networks and the Application to Time-Series Prediction." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(1), 62-72. https://doi.org/10.1109/3477.740166. [20] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi, 2019, "A Survey of Methods for Explaining Black Box Models." ACM Comput. Surv., 51(5), Article 93. https://doi.org/10.1145/3236009. [21] A. Adadi and M. Berrada, 2018, "Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)." IEEE Access, 6, 52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052. [22] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter and L. Kagal, 2018, "Explaining Explanations: An Overview of Interpretability of Machine Learning." Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 80-89. https://doi.org/10.1109/DSAA.2018.00018. [23] T. Chai and R. R. Draxler, 2014, "Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?– Arguments Against Avoiding RMSE in the Literature." Geosci. Model Dev., 7, 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014. [24] F. Yu and V. Koltun, 2015, "Multi-Scale Context Aggregation by Dilated Convolutions." arXiv preprint arXiv:1511.07122. [25] W. Luo, Y. Li, R. Urtasun and R. Zemel, 2016, "Understanding the Effective Receptive Field in Deep Convolutional Neural Networks." Advances in Neural Information Processing Systems, 29. [26] H. Li, Z. Xu, G. Taylor, C. Studer and T. Goldstein, 2018, "Visualizing the Loss Landscape of Neural Nets." Advances in Neural Information Processing Systems, 31. [27] A. Veit, M. J. Wilber and S. Belongie, 2016, "Residual Networks Behave Like Ensembles of Relatively Shallow Networks." Advances in neural information processing systems, 29. [28] V. Nair and G. E. Hinton, 2010, "Rectified Linear Units Improve Restricted Boltzmann Machines." Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML'10). Omnipress, Madison, WI, USA, 807–814. [29] B. Xu, N. Wang, T. Chen and M. Li, 2015, "Empirical Evaluation of Rectified Activations in Convolutional Network." arXiv preprint arXiv:1505.00853. [30] D. P. Kingma and J. Ba, 2014, "Adam: A Method for Stochastic Optimization." arXiv preprint arXiv:1412.6980. [31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, 2014, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting." The journal of machine learning research, 15(1), 1929-1958. [32] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, 2021, "Understanding Deep Learning (still) Requires Rethinking Generalization." Communications of the ACM, 64(3), 107-115. [33] Unit8. "Temporal Convolutional Networks and Forecasting." Accessed from https://unit8.com/resources/temporal-convolutional-networks-and-forecasting/. [34] Þórírmarsdóttir, L. "Temporal Convolutional Networks." Accessed from https://thorirmar.com/post/temporal_convolutional_networks/. [35] A. V. D. Oord, et al., 2016, "Wavenet: A Generative Model for Raw Audio." arXiv preprint arXiv:1609.03499. [36] M. Tan, S. Yuan, S. Li, Y. Su, H. Li and F. He, 2020, “Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning.” IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2937-2948, July, doi: 10.1109/TPWRS.2019.2963109. [37] Q. Zhang, H. Wang, J. Dong, G. Zhong and X. Sun, 2017, “Prediction of Sea Surface Temperature Using Long Short-Term Memory.” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1745-1749, Oct., doi: 10.1109/LGRS.2017.2733548. [38] A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib and P. Kumam, 2020, “Fractional Neuro-Sequential ARFIMA-LSTM for Financial Market Forecasting.” IEEE Access, vol. 8, pp. 71326-71338, doi: 10.1109/ACCESS.2020.2985763. [39] Q. Tao, F. Liu, Y. Li and D. Sidorov, 2019, “Air Pollution Forecasting Using a Deep Learning Model Based on 1D Convnets and Bidirectional GRU.” IEEE Access, vol. 7, pp. 76690-76698, doi: 10.1109/ACCESS.2019.2921578. [40] C. Li, G. Tang, X. Xue, A. Saeed, and X. Hu, 2020, “Short-Term Wind Speed Interval Prediction Based on Ensemble GRU Model.” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1370-1380, July, doi: 10.1109/TSTE.2019.2926147. [41] M. Kuzlu, U. Cali, V. Sharma and Ö. Güler, 2020, “Gaining Insight into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools.” IEEE Access, vol. 8, pp. 187814-187823, doi: 10.1109/ACCESS.2020.3031477. [42] X. -H. Li et al., 2022, “A Survey of Data-Driven and Knowledge-Aware eXplainable AI.” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 29-49, Jan, doi: 10.1109/TKDE.2020.2983930. [43] F. -L. Fan, J. Xiong, M. Li and G. Wang, 2021, “On Interpretability of Artificial Neural Networks: A Survey.” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 5, no. 6, pp. 741-760, Nov, doi: 10.1109/TRPMS.2021.3066428. [44] F. Yu and V. Koltun, 2015,"Multi-scale Context Aggregation by Dilated Convolutions." arXiv:1511.07122. [45] E. Štrumbelj and I. Kononenko, 2014, “Explaining Prediction Models and Individual Predictions with Feature Contributions.” Knowl Inf. Syst., vol. 41, pp. 647-665, [Online]. Available: https://doi.org/10.1007/s10115-013-0679-x. [46] Y. H. Pao, G. H. Park and D. J. Sobajic, 1994, "Learning and Generalization Characteristics of the Random Vector Functional-link Net." Neurocomputing, vol. 6, no. 2, pp. 163-180. [47] B. Igelnik and Y. H. Pao, 1995, "Stochastic Choice of Basis Functions in Adaptive Function Approximation and the Functional-link Net." IEEE Transactions on Neural Networks, vol. 6, no. 6, pp. 1320-1329. [48] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, 1998, "Gradient-Based Learning Applied to Document Recognition." Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov, doi: 10.1109/5.726791. [49] W. Luo, Y. Li, R. Urtasun, and R. Zemel, 2016, “Understanding the Effective Receptive Field in Deep Convolutional Neural Networks.” Advances in Neural Information Processing Systems, vol. 29. [50] H. Robbins and S. Monro, 1951, "A Stochastic Approximation Method." The Annals of Mathematical Statistics, pp. 400-407. [51] J. Duchi, E. Hazan and Y. Singer, 2011, “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.” Journal of Machine Learning Research, vol. 12, no. 7. [52] G. Hinton, “Neural Networks for Machine Learning.” Coursera course slides, [Online].
|