|
References Tai, Y. M., Ho, C. F., & Wu, W. H. (2010). The performance impact of implementing web-based eprocurement systems. International Journal of Production Research, 48(18), 5397-5414. Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98-110. Liu, Q., Sun, S. X., Wang, H., & Zhao, J. (2011). A multi-agent-based system for e-procurement exception management. Knowledge-Based Systems, 24(1), 49–57. Giunipero, L. C., & Aly Eltantawy, R. (2004). Securing the Upstream Supply Chain: A Risk Management Approach. International Journal of Physical Distribution & Logistics Management, 34(9), 698-713. doi: 10.1108/09600030410567478. Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information. Management science, 46(3), 436-443. Breitschwerdt, D., Cornet, A., Kempf, S., Michor, L., & Schmidt, M. (2017). The changing aftermarket game–and how automotive suppliers can benefit from arising opportunities. Advanced Industries, June. Retrieved from https://clepa.eu/wpcontent/uploads/2017/07/McKinsey_The-changing-aftermarket-game.pdf. Hu, Q., Boylan, J. E., Chen, H., & Labib, A. (2018). OR in spare parts management: A review. European Journal of Operational Research, 266(2), 395–414. Syntetos, A. A., Babai, M. Z., Boylan, J. E., Kolassa, S., & Nikolopoulos, K. (2016). Supply chain forecasting: Theory, practice, their gap and the future. European Journal of Operational Research, 252(1), 1–26. Hiscock, R. & M. J. Bloomfield (2021). "The value of studying supply chains for tobacco control." Tob Prev Cessat 7: 15. Hauke, J., Lorscheid, I., & Meyer, M. (2018). Individuals and their interactions in demand-planning processes: An agent-based, computational testbed. International Journal of Production Research, 56(13), 4644–4658.
Zhou, H., W. Benton, D. A. Schilling & G. W. Milligan. (2011). Supply Chain Integration and the SCOR Model. Journal of Business Logistics 32 (4): 332–344. Wang, X., & Petropoulos, F. (2016). To select or to combine? The inventory performance of model and expert forecasts. International Journal of Production Research, 54(17), 5271–5282. Chopra, S., & Meindl, P. (2010). Supply chain management: strategy, planning, and operation. Boston: Prentice Hall, c2010. Moon, M. A., Mentzer, J. T., & Smith, C. D. (2003). Conducting a sales forecasting audit. International Journal of Forecasting, 19(1), 5–25. Halldórsson, Á., G. Stefánsson, P. Jonsson, L. Kjellsdotter, and M. Rudberg. (2007). “Applying Advanced Planning Systems for Supply Chain Planning: Three Case Studies.” International Journal of Physical Distribution & Logistics Management 37 (10): 816–834. Oliva, R., and N. Watson. (2011). “Cross-functional Alignment in Supply Chain Planning: A Case Study of Sales and Operations Planning.” Journal of Operations Management 29 (5): 434–448. Kaipia, R., J. Holmström, J. Småros, and R. Rajala. (2017). “Information Sharing for Sales and Operations Planning: Contextualized Solutions and Mechanisms.” Journal of Operations Management 52: 15–29. Fildes, R., P. Goodwin, M. Lawrence, and K. Nikolopoulos. (2009). “Effective Forecasting and Judgmental Adjustments: An Empirical Evaluation and Strategies for Improvement in Supplychain Planning.” International Journal of Forecasting 25 (1): 3–23. Zoryk-Schalla, A. J., J. C. Fransoo, and T. G. de Kok. (2004). “Modeling the Planning Process in Advanced Planning Systems.” Information & Management 42 (1): 75–87. Moritz, B., E. Siemsen, and M. Kremer. (2014). Judgmental Forecasting: Cognitive Reflection and Decision Speed. Production and Operations Management 23 (7): 1146–1160. Chybalski, F. (2017). Forecast value added (FVA) analysis as a means to improve the efficiency of a forecasting process. Operations Research and Decissions; ISSN 2081-8858. Naish, H.F. (1994). Production smoothing in the linear quadratic inventory model. Quarterly Journal of Economics, 104, 864-875. Terwiesch, C., Ren, T., Ho, H., & Cohen, M. (2005). Forecast sharing in the semiconductor equipment supply chain. Management Science, 51, 208-220. McCarthy, T.M., Davis, D.F., Golicic, S.L., & Mentzer, J.T. (2006). The evolution of sales forecasting management: a 20-year longitudinal study of forecasting practices. Journal of Forecasting, 25 (5). 303-324. Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., & Winkler, R. (1982). The accuracy of extrapolation (time series) methods: results of a forecasting competition. Journal of Forecasting, 1, 111-153. Makridakis, S., & Hibon, M. (2000). The M3-Competition: results, conclusions and implications. International journal of forecasting, 16(4), 451-476. Chatfield, C. & Yar, M. (1988), Holt-Winters forecasting: some practical issues. Journal of the Royal Statistical Society, 37 (2), 129-140. Chopra, S., & Meindl, P. (2016). Supply chain management: Strategy, planning, and operation. Pearson. Siami-Namini, S., Dehkordi, H. T., & Hu, M. (2021). Seasonal forecasting: a review of algorithms, techniques, and applications. Annals of Operations Research, 298(1-2), 299-338. Gardner, E. S. (2006). Exponential smoothing: The state of the art. Journal of Forecasting, 25(1), 1-28. Bandara, D., Chiaraviglio, L., Granelli, F., & Rashwand, H. (2019). Seasonal time series forecasting with long short-term memory networks. IEEE Transactions on Neural Networks and Learning Systems, 30(12), 3861-3875. Silver, E.A., Pyke, D.F., & Peterson, R. (1998). Inventory Management and Production Planning and Scheduling, 3rd ed., New York: John Wiley & Sons. Lee, H.L., Padmanabhan, V., & Whang, S. (2004). Comments on information distortion in a supply chain: The bullwhip effect - The bullwhip effect: Reflections. Management Science, 50 (12), 1887-1893. Towill, D.R., Zhou, L., & Disney, S.M. (2007). Reducing the bullwhip effect: looking through the appropriate lens. International Journal of Production Economics, 108, 444-453. Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: The bullwhip effect. Management Science, 43 (4), 546-559. Forrester, J.W. (1961). Industrial Dynamics. Productivity Press, Portland OR. Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science, 35 (3). 321-339. Burbidge, J.L. (1981). The new approach to production. Production Engineer, 40 (12), 769-784. Eichenbaum, M.S. (1989). Some empirical evidence of the production level and production cost smoothing models of inventory investment. American Economics Review, 79 (4), 853-864. Blackburn, J. D. (1991). The quick response movement in the apparel industry: A case study in time-compressing supply chains. In: Blackburn, J.D.(Ed.). Time Based Competition: The Next Battleground in American Manufacturing. Irwin, Homewood, IL (Chapter 11). Caplice, C., & Sheffi, Y. (2006). Demand Forecasting I: Time Series Analysis. In ESD.260J Logistics Systems. Fall 2006. Massachusetts Institute of Technology: MIT OpenCourseWare. Green, K. C., & Armstrong, J. S. (2012). Demand Forecasting: Evidence-Based Methods. Available at SSRN 3063308. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.): OTexts. Nerlove, M., & Diebold, F. X. (1990). Autoregressive and Moving-average Time-series Processes. In J. Eatwell, M. Milgate, & P. Newman (Eds.), Time Series and Statistics (pp. 25-35). London: Palgrave Macmillan UK. Weller, M., & Crone, S. F. (2012). Supply Chain Forecasting: Best Practices & Benchmarking Study: Lancaster Centre for Forecasting. Mitrea, C. A., Lee, C. K. M., & Wu, Z. (2009). A Comparison between Neural Networks and Traditional Forecasting Methods: A Case Study. International Journal of Engineering Business Management, 1, 11. doi:10.5772/6777. Carbonneau, R., Laframboise, K., & Vahidov, R. (2008). Application of Machine Learning Techniques for Supply Chain Demand Forecasting. European Journal of Operational Research, 184(3), 1140-1154. doi:https://doi.org/10.1016/j.ejor.2006.12.004. Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in Forecasting with Neural Networks? Empirical Evidence from the NN3 Competition on Time Series Prediction. International Journal of Forecasting, 27(3), 635-660.doi:https://doi.org/10.1016/j.ijforecast.2011.04.001 Tashman, Leonard J. (2000). Out-of-sample tests of forecasting accuracy: An analysis and review. International Journal of Forecasting 16: 437–50. Kolassa, S. (2016). Evaluating predictive count data distributions in retail sales forecasting. International Journal of Forecasting, 32(3), 788–803. https://doi.org/10.1016/j.ijforecast.2015.12.004 Schwertman, N. C., Gilks, A. J., & Cameron, J. (1990). A simple noncalculus proof that the median minimizes the sum of the absolute deviations. The American Statistician, 44, 38–39. https://doi.org/10.1080/00031305.1990.10475690 Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001 Armstrong, J. S. (2001). Standards and practices for forecasting. In Principles of forecasting (pp. 679–732). Springer. Chen, C., Twycross, J., & Garibaldi, J. M. (2017). A new accuracy measure based on bounded relative error for time series forecasting. PloS One, 12(3), e0174202. https://doi.org/10.1371/journal.pone.0174202 Boone, T., Boylan, J. E., Fildes, R., Ganeshan, R., & Sanders, N. (2019). Perspectives on Supply Chain Forecasting. International Journal of Forecasting, 35(1), 121-127. doi:https://doi.org/10.1016/j.ijforecast.2018.11.002. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2018). Multivariate Data Analysis (8th ed.). Cengage Learning. Leedy, P. D., Ormrod, J. E., & Singleton, M. (2019). Practical research: Planning and design. Pearson Higher Ed. Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications. Field, A. (2018). Discovering statistics using IBM SPSS statistics. SAGE Publications. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 112, p. 18). New York: springer. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (pp. 61-62). New York: Springer.
|