[1]S. Doty and W.C. Turner, 2004, “Energy management handbook”, CRC Press.
[2]M.J. Moran, H.N. Shapiro, D.D. Boettner, and M.B. Bailey, 2010, “Fundamentals of engineering thermodynamics”, John Wiley & Sons.
[3]Lawrence-Livermore-National-Laboratory. US energy flow trends-2017. Available from: https://flowcharts.llnl.gov/.
[4]D. Thombare and S. Verma, 2008, “Technological development in the Stirling cycle engines”, Renewable and Sustainable Energy Reviews, 12(1): pp.1-38.
[5]H. Chen, D.Y. Goswami, and E.K. Stefanakos, 2010,” A review of thermodynamic cycles and working fluids for the conversion of low-grade heat”, Renewable and Sustainable Energy Reviews, 14(9): pp. 3059-3067.
[6]B.-T. Liu, K.-H. Chien, and C.-C. Wang, 2004, “Effect of working fluids on organic Rankine cycle for waste heat recovery”, The 12th Latin-American Congress on Electricity Generation and Transmission, 29(8): pp.1207-1217.
[7]S.B. Riffat and X. Ma, 2003, “Thermoelectrics: a review of present and potential applications”, Applied Thermal Engineering, 2003. 23(8): pp. 913-935.
[8]M. Zebarjadi, K. Esfarjani, M. Dresselhaus, Z. Ren, and G. Chen, 2012, “Perspectives on thermoelectrics: from fundamentals to device applications”, Energy & Environmental Science, 5(1): pp. 5147-5162.
[9]J. Kima, S. Yamanakaa, I. Murayamaa, T. Katoua, T. Sakamotoa, T. Kawasakib, T. Fukudac, T. Sekinod, T. Nakayamae, M. Takedae, M. Babae, H. Tanakaf, K. Aizawab, H. Hashimotod, and Y. Kim, 2019, “Pyroelectric power generation from the waste heat of automotive exhaust gas”, Sustainable Energy & Fuels, 4, pp. 1143-1149.
[10]F.Y. Lee, H.R. Jo, C.S. Lynch, and L. Pilon, 2013, “Pyroelectric energy conversion using PLZT ceramics and the ferroelectric–ergodic relaxor phase transition”, Smart Materials and Structures, 22(2), pp. 025038.
[11]I.M. McKinley, F.Y. Lee, and L. Pilon, 2014, “A novel thermomechanical energy conversion cycle”, Applied Energy, 126, pp. 78-89.
[12]B. Bhatia, A.R. Damodaran, H. Cho, L.W. Martin, and W.P. King, 2014, “High-frequency thermal-electrical cycles for pyroelectric energy conversion”, Journal of Applied Physics, 116(19), pp.194509.
[13]S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, and L. W. Martin , 2018, “Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films”, Nature Materials, 17, pp.432-438.
[14]You M.H., Wang X.X., Yan X., Zhang J., Song W.Z., Yu M., Fan Z.Y., Ramakrishna S., Long Y.Z., 2018, “A self-powered flexible hybrid piezoelectric-pyroelectric nanogenerator based on non-woven nanofiber membranes”, Journal of Materials Chemistry, 6, pp.3500–3509.
[15]Chen Y., Zhang Y., Yuan F., Ding F. and Schmidt O.G., 2017, “A Flexible PMN-PT Ribbon-Based Piezoelectric-Pyroelectric Hybrid Generator for Human-Activity Energy Harvesting and Monitoring”, Advanced Electronic Materials, 3, pp. 1600540.
[16]黃坤茂,2015,”氧化鋅薄膜應用於壓電獵能氣元件之研究”,國立台南大學材料科學系碩士論文。[17]S. Harihara Krishnan, D. Ezhilarasi, G. Uma, and M. Umapathy, 2014,
“Pyroelectric-Based Solar and Wind Energy Harvesting System”, IEEE Transactions on Sustainable Energy, pp73-81.
[18]蕭安盛,2016,”焦電材料於能源擷取之理論與實驗分析”,國立臺灣科技大學機械設計工程系博士學位論文。[19]A. Costela, I. García-Moreno, and R. Sastre, 2001, “Handbook of advanced electronic and photonic materials and devices”, Academic Press: San Diego, CA, 7, pp. 161.
[20]A. Costela, I. García-Moreno, and R. Sastre, 2001, “Handbook of advanced electronic and photonic materials and devices”, Academic Press: San Diego, CA, 7, pp. 161.
[21]S.B. Lang, 1974, “Sourcebook of pyroelectricity”, Vol. 2. :CRC Press.
[22]S.B. Lang, 2005, “Pyroelectricity: from ancient curiosity to modern imaging tool”, Physics Today, 58(8) , pp. 31.
[23]M. Ikura, 2002, “Conversion of low-grade heat to electricity using pyroelectric copolymer”, Ferroelectrics, 267(1) , pp. 403-408.
[24]Whatmore, R. W., 1986, “Pyroelectric devices and materials”, Reports on Progress in Physics, 49, 12, pp. 1335-1386.
[25]M. Ikura, 2002, “ Conversion of low-grade heat to electricity using pyroelectric copolymer”, Ferroelectrics, 267(1), pp. 403-408.
[26]R.B. Olsen, D.A. Bruno, J.M. Briscoe, and E.W. Jacobs, 1985, “Pyroelectric conversion cycle of vinylidene fluoride‐trifluoroethylene copolymer”, Journal of Applied Physics, 57(11), pp. 5036-5042.
[27]R. Olsen and D. Bruno, 1986, “Proceedings of the Twenty-first Intersociety Energy Conversion Engineering Conference”, Pyroelectric conversion materials, in IECEC'86.
[28]R. Olsen and D. Brown, 1982, “High efficiency direct conversion of heat to electrical energy-related pyroelectric measurements”, Ferroelectrics, 40(1) , pp. 17-27.
[29]R. Olsen, D. Bruno, .J. Briscoe, and J. Dullea, 1984, “Cascaded pyroelectric energy converter”, Ferroelectrics, 59(1), pp. 205-219.
[30]R.B. Olsen, J.M. Briscoe, D.A. Bruno, and W.F. Butler, 1981, “A pyroelectric energy converter which employs regeneration”, Ferroelectrics, 38(1), pp. 975-978.
[31]R.B. Olsen, 1982, “Ferroelectric conversion of heat to electrical energy”, A demonstration Journal of Energy, 6(2), pp. 91-95.