資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
English
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
訪客IP:216.73.216.158
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
張峻樺
研究生(外文):
CHANG, JUN-HUA
論文名稱:
基於徑向移動之磨床砂輪動平衡機構與監測介面開發
論文名稱(外文):
Development of Dynamic Balancing Mechanism and Monitoring Interface of Grinding Wheel Based on Radial Movement
指導教授:
張文陽
指導教授(外文):
CHANG, WEN-YANG
口試委員:
張哲華
、
張景星
口試委員(外文):
ZHANG, ZHE-HUA
、
ZHANG, JING-XING
口試日期:
2022-09-20
學位類別:
碩士
校院名稱:
國立虎尾科技大學
系所名稱:
機械與電腦輔助工程系碩士班
學門:
工程學門
學類:
機械工程學類
論文種類:
學術論文
論文出版年:
2022
畢業學年度:
110
語文別:
中文
論文頁數:
57
中文關鍵詞:
自動砂輪動平衡
、
影響係數法
、
徑向移動
、
CNC磨床
、
振動
外文關鍵詞:
Automatic Grinding Wheel Dynamic Balancing
、
Influence Coefficient Method
、
Radial Movement
、
CNC Grinder
、
Vibration
相關次數:
被引用:0
點閱:244
評分:
下載:0
書目收藏:0
在工具機產業中,轉子設備為不可或缺的要素,無論是車床、磨床、銑床、鑽床等機械,都必須藉由旋轉工件或刀具來進行生產作業,故轉子設備的運轉品質會很直接的影響到最終成品的誤差與表面品質,並且良好的轉子設備可以有效降低機台損耗以及故障停機的引發機率,更可以進一步的省下不可預期之金錢與時間上的成本。而隨著近年來高速主軸的發展,由於轉子不平衡振動所引發的效應對於加工效率、軸承壽命、加工品質等影響也從而增加,因此為了改善不平衡振動的問題,現況絕大部分之轉子系統也都紛紛的配上動平衡設備,也同時對於該動平衡設備之性能與反應能力也愈來愈重視,然而隨著工業4.0的興起,在各家工具機廠商對於轉子動平衡系統的需求逐漸深入,再加上市場上的互相競爭,自動式的轉子動平衡系統已成為現階段的趨勢,而不同於傳統的轉子動平衡系統,其形貌更為多樣,且應用了更豐富的技術與理論,就目前現有的自動動平衡系統如鋼球自動平衡、油壓自動平衡、磁力自動平衡等。本研究開發了一套線上轉子動平衡系統,其中針對CNC平面磨床設計了一個基於徑向移動的自動砂輪動平衡機構,並搭配了監測介面系統,而本研究整體主要分為三大部分,首先為針對動平衡治具進行3D建模與加工製作,並且透過步進馬達與單晶片的控制來達到微調質量塊的目的;其二為基於影響係數方法,藉由量測砂輪振動及振幅相位角,以估測出目前砂輪的不平衡量及位置,緊接著透過三配塊徑向微調的方式,將砂輪不平衡量進行抵銷,並達到動平衡的效果;其三為開發線上監測系統,以藉此即時追蹤目前主軸振動與負載電流狀態。由實驗結果顯示,本研究的動平衡校正設備,能夠降低振動位移量約為0.2μm,同時可改善砂輪不平衡所致的振動約為22%,而質量塊自動微調的過程僅需花費3秒。而本研究成果相較於傳統之動平衡設備的平衡校正性能雖然略遜一籌,但所構想之方法與實驗依據可提供參考,為後續之動平衡系統進行更進一步的應用。
In the machine tool industry, rotor equipment is an essential element. Whether it is for Lathes, Grinders, miller, driller, etc., all production operations must be performed by rotating workpieces or tools, thus the operating quality of rotor equipment will directly affect the error and surface quality of the final product, and the good rotor equipment can effectively reduce machine loss and the probability of mechanical shut down, and can further save unpredictable money and time costs.Recent years, through the development of high-speed spindles, the effects caused by the unbalanced vibration of the rotor have also increased the processing efficiency, bearing life, and processing quality. Therefore, to improve the problem of unbalanced vibration, most of the current rotor systems are equipped with dynamic balancing equipment, and at the same time, paid more and more attention to the performance and responsiveness of the dynamic balancing equipment. However, with the rise of Industry 4.0, the demand for rotor dynamic balancing systems amount the tool manufacturers is gradually increasing. And, with the competition in the market, the automatic rotor dynamic balancing system has become the trend at this stage, which is different from the traditional rotor dynamic balancing system, its appearance is more diverse, and it also utilize more abundant technology and theory, the existing automatic dynamic balancing systems such as steel ball automatic balancing, oil pressure automatic balancing, magnetic automatic balancing and so on.In this study, a set of online rotor dynamic balancing system was developed, in which we design an automatic grinding wheel dynamic balancing mechanism based on radial movement for the CNC grinder, and it was equipped with a monitoring interface system. This research is mainly divided into three parts. First, 3D modeling and processing for the dynamic balance jig, and achieve the purpose of fine-tuning the correction mass through the control of the stepper motor and single chip microcomputer, Second, based on the influence coefficient method, by measuring the vibration of the grinding wheel and the amplitude phase angle to estimate the current unbalance and position of the grinding wheel, and then through radial through the fine-tuning of the three- correction mass, for offsetting the unbalance of the grinding wheel to achieve the effect of dynamic balance. Third, develop an online monitoring system to real-time track the current spindle vibration and load-current status.The results show that the dynamic balance correction device in this study can reduce the vibration displacement by about 0.2μm, At the same time, the vibration caused by the unbalance of the grinding wheel can be improved by about 22%, and it only takes three seconds for automatic fine-tuning of the correction mass.Although, compared with the traditional dynamic balancing equipment, the balance correction performance of the research results is slightly inferior, but the idea method and experimental basis can be reference for further application of the subsequent dynamic balancing system.
摘要...i
Abstract...ii
誌謝...iv
目錄...v
表目錄...vii
圖目錄...viii
符號說明...x
第 一 章 緒論...1
1.1 研究背景與動機...1
1.2 研究目的...2
1.3 論文架構...2
第 二 章 文獻回顧...3
2.1 動平衡自動校正方法國內外相關研究...3
2.2 轉子質心校正演算法國內外相關研究...8
第 三 章 研究方法與硬體架構...12
3.1 研究架構與流程...12
3.2 系統硬體架構...13
3.2.2 平面磨床機台...13
3.2.3 加速規與光電感測器...4
3.3 三配塊徑向移動治具之設計...15
3.3.1 三配塊徑向移動治具之3D建模...15
3.3.2 步進馬達控制與電路轉接...18
3.4 砂輪動態不平衡估測與徑向微調校正系統...20
3.4.1 基於影響係數法估測砂輪不平衡...20
3.4.2 三配塊徑向微調之動平衡校正機制...22
3.5 動平衡標準規範之探討...26
第 四 章 實驗結果...29
4.1 三配塊徑向移動治具開發...29
4.1.1 三配塊徑向移動治具製作成品...29
4.1.2 三配塊徑向移動治具之誤差量測...30
4.1.3 步進馬達整合單晶片控制與量測系統建置...32
4.1.4 三配塊徑向移動治具之偏差補償...33
4.2 砂輪動態不平衡估測與校正實驗...37
4.2.1 三配塊徑向微調之動平衡校正結果...37
4.2.2 各轉速下的動平衡校正結果...39
4.3 即時砂輪振動監測系統開發...39
第 五 章 結論與未來展望...41
參考文獻...43
Extended Abstract...45
1. Introduction...47
2. Research of automatic rotor dynamic balance methods...48
3. Experiment & methodology...49
3.1 System setup...49
3.2 Design of dynamic balance correction jig...50
3.3 Estimation of grinding wheel unbalance based on Influence Coefficient method...51
3.4 Dynamic balance correction mechanism of three-correction mass radial direction fine-tuning...53
4. Results and discussions...57
4.1 Development of the dynamic balance jig...57
4.2 Integration of stepper motor and micro controller unit control...58
4.3 Experiment of grinding wheel unbalance estimating and correcting...59
4.4 Discussions...62
[1] Baltech AB-01 Auto Balancer ,” http://www.baltech.com.tw/edcontent_d.php?lang=tw&tb=16&id=1440”.
[2] SBS Auto Balancing,” https://accretechsbs.com/what-we-do/#auto-balancing”.
[3] G-TECH Fieldpaq II,” https://www.g-tech-inst.com/products_detail/202105250004.html ”.
[4] Hongwei Fan, Minqing Jing, Renchao Wang, Heng Liu n, Jingjuan Zhi, ” Effect of grinding forces on the vibration of grinding machine spindle system”, Journal of Sound and Vibration, 5 2014.
[5] Chao-Hui Ou, Cheung-Hwa Hsu, Gui-Jie Fan, Wei-Yu Chen, “A Variation of Instability in a Rotating Spindle System with Various Bearings,” Advances in Mechanical Engineering, 2020.
[6] Shyh-Leh Chen, Shyu-Yu Lin, Chow-Shing Toh,” Adaptive Unbalance Compensation for a Three-Pole Active Magnetic Bearing System”, Ieee Transactions on Industrial Electronics, VOL. 67, 3 2020.
[7] B. Hredzak, G. Guo, “Active balancer with electromagnetic release of balancing members,” 31st Annual Conference of IEEE Industrial Electronics Society, 2005.
[8] Xin Pan, Zhen Xie, Juan Lu, Haiqi Wu, Jinji Gao, Zhinong Jiang, “Novel Liquid Transfer Active Balancing System for Hollow Rotors of High-Speed Rotating Machinery,” Applied Sciences, 2 2019.
[9] Jong-Duk Moon, Bong-Suk Kim, Soo-Hun Lee, “Development of the active balancing device for high-speed spindle system using influence coefficients,” International Journal of Machine Tools & Manufacture, 2006.
[10] Jiang Kejian, Zhu Changsheng, Chen Liangliang, “Unbalance Compensation by Recursive Seeking Unbalance Mass Position in Active Magnetic Bearing-Rotor System,” Ieee Transactions on Industrial Electronics, VOL. 62, 9 2015.
[11] Shihai Zhang, Yanshuang Wang, Zimiao Zhang, ”Online Dynamic Balance Technology for High Speed Spindle Based on Gain Parameter Adaption and Scheduling Control”, Applied Sciences, 8 2018.
[12] Yangbo Zheng , Ni Mo, Yan Zhou, Zhengang Shi, ”Unbalance Compensation and Automatic Balance of Active Magnetic Bearing Rotor System by Using Iterative Learning Control”, IEEE Access, Vol. 7, 8 2019.
[13] 沈耘生,張文陽,2018, ”工具機銑銷力與主軸熱變形補償分析”,國立虎尾科技大學,碩士學位論文.
[14] N. E. Huang, Z. Shen and S. R. Long, et al., ”The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis”, Proc. Royal Society, vol. 454, pp. 903-995, London, 1998.
[15] 邱昱翔,張文陽,2021, ”以基於希爾伯特黃轉換即時監控砂輪振動與動平衡校正系統”,國立虎尾科技大學,碩士學位論文.
[16] 伍良生, 李俊, 肖毅川, 周大帥, June, 2011, ”基於盤狀加工件在線動平衡技術的研究”, JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY, Vol.37, No.6.
[17] Mechanical vibration-Balance quality requirements for rotor in a consteant(rigid) state-ISO 1940-1-Part1: Specification and verification of balance torlerances”, International Standard, second edition, 2003.
[18] 許丞宏,張文陽, 2013, ”自行車零組件之自動化加工設備開發” ,國立虎尾科技大學,碩士學位論文.
[19] 吳俊賢,張文陽, 2021, ”神經網路疊代收斂性分析與智能化預測加工品質及砂輪壽命”,國立虎尾科技大學,碩士學位論文.
電子全文
(
網際網路公開日期:20270926
)
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
推文
推文
推文到facebook
推文到plurk
推文到twitter
Google bookmarks
myshare
reddit
netvibes
top
相關論文
相關期刊
熱門點閱論文
1.
工具機銑削力與主軸熱變形補償分析
2.
自行車零組件之自動化加工設備開發
3.
神經網路疊代收斂性分析與智能化預測加工品質及砂輪壽命
4.
基於希爾伯特黃轉換即時監控砂輪振動與動平衡校正系統
無相關期刊
1.
基於神經網路智能化辨識刀具影像特徵及預測刀具壽命
2.
基於田口法分析三種不同材質端銑刀具之磨耗研究
3.
沖壓工件之動態立體視覺建模與手臂取放
4.
基於視覺檢測與智能監控電流預估刀具磨耗與壽命
5.
基於希爾伯特黃轉換即時監控砂輪振動與動平衡校正系統
6.
基於虛實整合之機械手臂遠端路徑規劃系統開發
7.
神經網路疊代收斂性分析與智能化預測加工品質及砂輪壽命
8.
基於格雷碼與電流訊號輔助動態對刀之磨床工件定位系統
9.
自動化斜進式外圓磨床之工業4.0技術應用
10.
基於點對特徵匹配應用機械手臂於堆疊物件之夾取系統
11.
影像視覺辨識之產品外觀特徵檢測
12.
人機即時三維動態追蹤與智能化防碰撞監控系統
13.
基於工具機主軸電流智能化預測刀具壽命
14.
自動化設備導入產線之研究 -以P公司為例
15.
基於漸開線自動生成齒輪3D輪廓磨削加工路徑開發
簡易查詢
|
進階查詢
|