|
(1) Ribitsch, D.; Acero, E. H.; Greimel, K.; Dellacher, A.; Zitzenbacher, S.; Marold, A.; Rodriguez, R. D.; Steinkellner, G.; Gruber, K.; Schwab, H.; et al. A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET) and Polylactic Acid (PLA). Polymers 2012, 4 (1), 617-629, Article. DOI: 10.3390/polym4010617. (2) da Silva, A. S.; Adriani, P. P.; de Oliveira, G. S.; Rocha, A. R. L.; Perpétuo, E. A.; Dias, M. V. B.; Chambergo, F. S. Biochemical characterization of an esterase from Thermobifida fusca YX with acetyl xylan esterase activity. Mol. Biol. Rep. 2024, 51 (1), 11, Article. DOI: 10.1007/s11033-024-09601-7. Akram, F.; Fatima, T.; Shabbir, I.; Ul Haq, I.; Ibrar, R.; Mukhtar, H. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol. Biotechnol. 2024, 17, Review; Early Access. DOI: 10.1007/s12033-024-01108-7. Dahiya, D.; Nigam, P. S. Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. Sustainability 2022, 14 (14), 12, Review. DOI: 10.3390/su14148673. (3) Hubbard, R. E.; O'Mahony, M. S.; Calver, B. L.; Woodhouse, K. W. Plasma esterases and inflammation in ageing and frailty. Eur. J. Clin. Pharmacol. 2008, 64 (9), 895-900, Article. DOI: 10.1007/s00228-008-0499-1. Yang, F.; Bian, C. B.; Zhu, L. L.; Zhao, G. X.; Huang, Z. X.; Huang, M. D. Effect of human serum albumin on drug metabolism: Structural evidence of esterase activity of human serum albumin. J. Struct. Biol. 2007, 157 (2), 348-355, Article. DOI: 10.1016/j.jsb.2006.08.015. (4) Feng, Y. N.; Jin, Y.; Wei, S.; Shu, Z.; Lu, W. C.; Ming, L.; Lin, H. Transcription and induction profiles of two esterase genes in susceptible and acaricide-resistant Tetranychus cinnabarinus. Pest. Biochem. Physiol. 2011, 100 (1), 70-73, Article. DOI: 10.1016/j.pestbp.2011.02.007. Quyen, D. T.; Dao, T. T.; Nguyen, S. L. T. A novel esterase from Ralstonia sp M1:: Gene cloning, sequencing, high-level expression and characterization. Protein Expr. Purif. 2007, 51 (2), 133-140, Article. DOI: 10.1016/j.pep.2006.06.009. Chang, P. A.; Long, D. X.; Wu, Y. J. Molecular cloning and expression of the C-terminal domain of mouse NTE-related esterase. Mol. Cell. Biochem. 2007, 306 (1-2), 25-32, Article. DOI: 10.1007/s11010-007-9550-2. (5) Ufarte, L.; Laville, E.; Duquesne, S.; Potocki-Veronese, G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 2015, 33 (8), 1845-1854. DOI: 10.1016/j.biotechadv.2015.10.009 From NLM Medline. Fukami, T.; Yokoi, T. The Emerging Role of Human Esterases. Drug Metab. Pharmacokinet. 2012, 27 (5), 466-477, Review. DOI: 10.2133/dmpk.DMPK-12-RV-042. (6) Kuhr, R. J.; Dorough, H. W. Carbamate insecticides: chemistry, biochemistry, and toxicology; 1976. Sogorb, M. A.; Vilanova, E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology letters 2002, 128 (1-3), 215-228. Singh, B. K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS microbiology reviews 2006, 30 (3), 428-471. (7) Piazza, O.; Cascone, S.; Sessa, L.; De Robertis, E.; Lamberti, G. The effect of liver esterases and temperature on remifentanil degradation in vitro. Int. J. Pharm. 2016, 510 (1), 359-364, Article. DOI: 10.1016/j.ijpharm.2016.06.043. (8) Ishii, K.; Venkataiah, V. S.; Kajiwara, T.; Umezawa, K.; Suzuki, S.; Nakano, M.; Sawaguchi, M.; Yahata, Y.; Saito, M. Salivary leukocyte esterase activity by SillHa is a risk indicator of periodontal disease. BMC Oral Health 2023, 23 (1), 11, Article. DOI: 10.1186/s12903-023-02874-7. Herholz, K. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, S25-S29, Article. DOI: 10.1007/s00259-007-0699-4. Sen, S.; Bose, T.; Roy, A.; Chakraborti, A. S. Effect of non-enzymatic glycation on esterase activities of hemoglobin and myoglobin. Mol. Cell. Biochem. 2007, 301 (1-2), 251-257, Article. DOI: 10.1007/s11010-007-9418-5. Herholz, K.; Weisenbach, S.; Zündorf, G.; Lenz, O.; Schröder, H.; Bauer, B.; Kalbe, E.; Heiss, W. D. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 2004, 21 (1), 136-143, Article. DOI: 10.1016/j.neuroimage.2003.09.042. Fuhrman, B.; Partoush, A.; Aviram, M. Acetylcholine esterase protects LDL against oxidation. Biochem. Biophys. Res. Commun. 2004, 322 (3), 974-978, Article. DOI: 10.1016/j.bbrc.2004.08.019. (9) Wang, J.; Teng, Z.; Zhang, L.; Yang, Y.; Qian, J.; Cao, T.; Cao, Y.; Qin, W.; Liu, Y.; Guo, H. Multifunctional Near-Infrared Fluorescent Probes with Different Ring-Structure Trigger Groups for Cell Health Monitoring and In Vivo Esterase Activity Detection. ACS Sens 2020, 5 (10), 3264-3273. DOI: 10.1021/acssensors.0c01734 From NLM Medline. Yang, H. F.; Liu, C. M.; Mei, Y.; Zhang, P.; Zhang, Q.; Ding, C. F. Ratiometric fluorescent probe with signals from two near-infrared channels for esterase activity and its application in biological imaging. Sens. Actuator B-Chem. 2023, 395, 8, Article. DOI: 10.1016/j.snb.2023.134513. Yang, Y. Z.; Xu, Z. Y.; Li, N. B.; Luo, H. Q. Ultrasensitive fluorescent probe for visual biosensing of esterase activity in living cells and its imaging application. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2021, 262, 7, Article. DOI: 10.1016/j.saa.2021.120094. Wang, J.; Xu, W. B.; Yang, Z. C.; Yan, Y. C.; Xie, X. X.; Qu, N.; Wang, Y.; Wang, C. Y.; Hua, J. L. New Diketopyrrolopyrrole-Based Ratiometric Fluorescent Probe for Intracellular Esterase Detection and Discrimination of Live and Dead Cells in Different Fluorescence Channels. ACS Appl. Mater. Interfaces 2018, 10 (37), 31088-31095, Article. DOI: 10.1021/acsami.8b11365. (10) Kong, Q.; Wang, J.; Chen, Y. H.; Zheng, S. Y.; Chen, X. Q.; Wang, Y. H.; Wang, F. The visualized fluorescent probes based on benzothiazole used to detect esterase. Dyes Pigment. 2021, 191, 7, Article. DOI: 10.1016/j.dyepig.2021.109349. (11) Kim, Y. M.; Choi, Y. D.; Weissleder, R.; Tung, C. H. Membrane permeable esterase-activated fluorescent imaging probe. Bioorg. Med. Chem. Lett. 2007, 17 (18), 5054-5057, Article. DOI: 10.1016/j.bmcl.2007.07.026. (12) Fan, L.; Tong, C. Y.; Cao, Y. X.; Long, R. Q.; Wei, Q. S.; Wang, F.; Tong, X.; Shi, S. Y.; Guo, Y. Highly specific esterase activated AIE plus ESIPT probe for sensitive ratiometric detection of carbaryl. Talanta 2022, 246, 7, Article. DOI: 10.1016/j.talanta.2022.123517. (13) Tallman, K. R.; Levine, S. R.; Beatty, K. E. Small-Molecule Probes Reveal Esterases with Persistent Activity in Dormant and Reactivating Mycobacterium tuberculosis. ACS Infect. Dis. 2016, 2 (12), 48-56, Article. DOI: 10.1021/acsinfecdis.6b00135. (14) Shen, T. J.; Zang, S. P.; Shu, W.; Nie, L. X.; Jing, J.; Zhang, X. L. A ratiometric fluorescent probe for mitochondrial esterase specific detection in living cells. Dyes Pigment. 2020, 178, 8, Article. DOI: 10.1016/j.dyepig.2020.108345. (15) Kim, S.; Kim, H.; Choi, Y.; Kim, Y. A New Strategy for Fluorogenic Esterase Probes Displaying Low Levels of Non-specific Hydrolysis. Chem.-Eur. J. 2015, 21 (27), 9645-9649, Article. DOI: 10.1002/chem.201501127. (16) Tian, Y.; Wang, Z. Q.; Xu, X.; Guo, Y. Q.; Ma, Y. N.; Lu, Y. Q.; Shen, M. W.; Geng, Y.; Tomás, H.; Rodrigues, J.; et al. Natural alkaloids from Dicranostigma leptopodum (Maxim.) Fedde and their G5. NHAc-PBA dendrimer-alkaloid complexes for targeting chemotherapy in breast cancer MCF-7 cells. Nat. Prod. Res. 2024, 18, Article; Early Access. DOI: 10.1080/14786419.2024.2335669.
|