[1] Ye, N., et al. (2014). "Synthesis and Characterization of Geopolymer from Bayer Red Mud with Thermal Pretreatment." Journal of the American Ceramic Society 97(5): 1652-1660.
[2] Kar, M. K., et al. (2023). "Alumina recovery from bauxite residue: A concise review." Resources, Conservation and Recycling 198.
[3] Andrew R. Hind, et al. (1999). “The surface chemistry of Bayer process solids: a review” Colloids and Surfaces A: Physicochemical and Engineering Aspects 146: 359–374
[4] Laparra, M. (2012). "The Aluminium False Twins. Charles Martin Hall and Paul Héroult’s First Experiments and Technological Options." Cahiers d'histoire de l'aluminium N° 48(1): 84-105. [5] Attia, N., et al. (2018). Environmental Impacts of Aluminum Dross After Metal Extraction. Light Metals 2018: 1155-1161. [6] Shinzato, M. C. and R. Hypolito (2016). "Effect of disposal of aluminum recycling waste in soil and water bodies." Environmental Earth Sciences 75(7).
[7] Mahinroosta, M. and A. Allahverdi (2018). "A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross." Journal of Cleaner Production 179: 93-102.
[8] Lv, H., et al. (2022). "Effective Extraction of the Al Element from Secondary Aluminum Dross Using a Combined Dry Pressing and Alkaline Roasting Process." Materials (Basel) 15(16). [9] Yang, H. L., et al. (2022). "Hydrolysis Behavior and Kinetics of AlN in Aluminum Dross during the Hydrometallurgical Process." Materials (Basel) 15(16). [10] Kumar, R. S., et al. (2011). "Hydrolysis control of alumina and AlN mixture for aqueous colloidal processing of aluminum oxynitride." Ceramics International 37(7): 2583-2590.
[11] Wang, J., et al. (2017). "Recovery of rare earths and aluminum from FCC waste slag by acid leaching and selective precipitation." Journal of Rare Earths 35(11): 1141-1148.
[12] Jiménez, A., et al. (2022). "A comparative study of acid and alkaline aluminum extraction valorization procedure for aluminum saline slags." Journal of Environmental Chemical Engineering 10(3).
[13] Ahmed, M. M., et al. (2021). "The use of aluminum slag waste in the preparation of roof tiles." Materials Research Express 8(12).
[14] Yoldi, M., et al. (2020). "Zeolite synthesis from aluminum saline slag waste." Powder Technology 366: 175-184.
[15] Yoshimura, H. N., et al. (2008). "Evaluation of aluminum dross waste as raw material for refractories." Ceramics International 34(3): 581-591.
[16] 張智鈞等人,2022, “鋁渣鹼溶處理再製成環保紅磚之研究”, 中華民國環境工程學會 2022 廢棄物處理技術研討會,11月18日至11月19日。
[17] 陶錫富,2009, “二次鋁渣於一貫作業煉鋼廠再利用之探討”, 國立高雄應用科技大學化學工程與材料工程系碩士論文。[18] Souza, R., et al. (2019). "Potassium alum thermal decomposition study under non-reductive and reductive conditions." Journal of Materials Research and Technology 8(1): 745-751.
[19] Edward G. Denk, JR. and Gregory D. Botsaris. (1970). “Mechanism of potassium alum crystal growth from solution.” Journal of Crystal Growth 6: 241—244
[20] Jun Ren., et al. (2000). “Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant.” Int. J. Miner. Process. 59: 237–245
[21] Shafiquzzaman, M., et al. (2022). "Sawdust Recycling in the Development of Permeable Clay Paving Bricks: Optimizing Mixing Ratio and Particle Size." Sustainability 14(18).
[22] Zhou, C. (2018). "Production of eco-friendly permeable brick from debris." Construction and Building Materials 188: 850-859.
[23] Miqueleiz, L., et al. (2013). "Alumina filler waste as clay replacement material for unfired brick production." Engineering Geology 163: 68-74.
[24] Lin, C. F., et al. (2006). "Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials." Waste Manag 26(9): 970-978
[25] A. Nur., et al. (1998). “Critical porosity: A key to relating physical properties to porosity in rocks.” The leading Edge 17: 357-362
[26] Dean-MO Liu., (1997). “Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic.” Ceramics International 23: 135-139
[27] Katz, B. J. and I. Arango (2018). "Organic porosity: A geochemist's view of the current state of understanding." Organic Geochemistry 123: 1-16.
[28] Takashi Kyotani, (2000). “Control of pore structure in carbon.” Carbon 38: 269–286