[1] R. Martinez‐Duarte, P. Renaud, and M. J. Madou, “A novel approach to dielectrophoresis using carbon electrodes,” Electrophoresis,Vol 32, no 17, pp. 2385-2392, 2011
[2] L. Wang, L. A. Flanagan, N. L. Jeon, E. Monuki, and A. P. Lee,
“Dielectrophoresis switching with vertical sidewall electrodes for
microfluidic flow cytometry,” Lab Chip, Vol. 7, no. 9, pp. 1114-1120, 2007.
[3] R. Martinez-Duarte, R. A. Gorkin, K. Abi-Samrab, and M. J. Madou,
“The integration of 3D carbon-electrode dielectrophoresis on a CD-like
centrifugal microfluidic platform,” Lab Chip, Vol. 10, no. 8, pp.1030, 2010.
[4] V. Chaurey, A. Rohani, Y. H. Su, K. T. Liao, and C. F. Chou, “Scaling
down constriction‐based (electrodeless) dielectrophoresis devices for
trapping nanoscale bioparticles in physiological media of high‐
conductivity,” Electrophoresis, Vol 34, no 7, pp. 1097-1104, 2013.
[5] P. K. Thwar, J. J. Linderman, and M. A. Burns, “Electrodeless direct
current dielectrophoresis using reconfigurable field‐shaping oil barriers,”
Electrophoresis , Vol 28. no 24, pp. 4572-4581, 2007.
[6] S. V. Puttaswamy, C. H. Lin, S. Sivashankar,Y. S. Yang, and C. H.
Liu,“Electrodeless dielectrophoretic concentrator for analyte preconcentration on poly-silicon nanowire field effect transistor,” Sensors Actuators B Chem, Vol. 178, pp. 547-554, 2013.
[7] A. Kale, L. Song, X. Lu, L. Yu, G. Hu, and X. Xuan, “Electrothermal
enrichment of submicron particles in an insulator‐based dielectrophoretic microdevice,” Electrophoresis, Vol 39, Issue 5-6, pp. 887-896, 2018.
[8] S. Park, M. Koklu, and A. BeskoK, “Particle trapping in highconductivity media with electrothermally enhanced negative dielectrophoresis,” Anal. Chem, Vol. 81, no. 6, pp. 2303-2310, 2009.
[9] Z. Ma, J. Guo, Y. J. Liu, and Y. Ai, “The patterning mechanism of carbon
nanotubes using surface acoustic waves: The acoustic radiation effect or
the dielectrophoretic effect,” Nanoscale, Vol. 7, pp. 14047-14054, 2015.
[10]H. Y. Wang, C. Y. Chen, P. Y. Chu, Y. X. Zhu, C. H. Hsieh, J. J. Lu, and
M. H. Wu, “Application of an optically induced dielectrophoresis (ODEP)-based microfluidic system for the detection and isolation of bacteria with heterogeneity of antibiotic susceptibility,” Sens. Actuators B Chem, Vol. 307, pp.127540, 2020.
[11]T. K. Chiu, A. C. Chao, W. P. Chou, C. J. Liao, H. M. Wang, J. H. Chang,
P. H. Chen, and M. H. Wu, “Optically-induced-dielectrophoresis
(ODEP)-based cell manipulation in a microfluidic system for highpurity isolation of integral circulating tumor cell (CTC) clusters based
on their size characteristics,” Sens. Actuators B Chem, Vol. 258, pp. 1161-1173, 2018.
[12]X. Jiang, Y. Zhou, Y. Chen, Y. Shao, and J. Feng, “Etching-engineered low-voltage dielectrophoretic nanotweezers for trapping of single molecules,” Analytical Chemistry, Vol. 93.no. 37, pp.12549-12555,2021.
[13]P. Y. Chu, C. H. Hsieh, and M. H. Wu, “The Combination of immunomagnetic bead-based cell isolation and optically induced dielectrophoresis (ODEP)-based microfluidic device for the negative selection-based isolation of circulating tumor cells (CTCs),” Frontiers in Bioengineering and Biotechnology, Vol 8, no 921, 2020.
[14]C. J. Liao, C. H. Hsieh, T. K. Chiu, Y. X. Zhu, and H. M. Wang, “An optically induced dielectrophoresis (ODEP)-based microfluidic system
for the isolation of high-purity CD45neg/EpCAMneg cells from the blood samples of cancer patients—demonstration and initial exploration of the clinical significance of these cells,” Micromachines, Vol 9, no 11, pp.563, 2018.
[15]Y. J. Eo, G. Y. Yoo, H. Kang, Y. K. Lee, C. S. Kim, and Y. R.Do,“Enhanced DC-Operated Electroluminescence of Forwardly Aligned p/MQW/n InGaN Nanorod LEDs via DC Offset-AC Dielectrophoresis,” ACS applied materials & interfaces,Vol 9, no 43, pp.
37912-37920, 2017.
[16]H. A. Pohl, “The Motion and precipitation of suspensoids in divergent
electric fields,” Appl. Phys, Vol. 22, no. 7, pp. 869-871, 1951.
[17]X. Wang, Y. Xin, L. Ren, Z. Sun, P. Zhu, Y. Ji, C. Li, J. Xu, and B. O.
MA, “Positive dielectrophoresis–based Raman-activated droplet sorting
for culture-free and label-free screening of enzyme function in
vivo,” Science advances,vol 6, no 32,eabb3521, 2020.
[18]P. Y. Chu, C. J. Liao, C. H. Hsieh, H. M. Wang, W. P. Chou, P. H. Chen,
and M. H. Wu, “Utilization of optically induced dielectrophoresis in a
microfluidic system for sorting and isolation of cells with varied degree
of viability: Demonstration of the sorting and isolation of drug-treated
cancer cells with various degrees of anti-cancer drug resistance gene
expression,” Sensors and Actuators B: Chemical, Vol 283, pp. 621-631,
2019.
[19]Y. Takahashi, and S. Miyata, “Continuous ES/feeder cell-sorting device
using dielectrophoresis and controlled fluid flow,” Micromachines, Vol
11. no 8, pp. 734, 2020.
[20]T. Shibuya, S. Uchida, Y. Ishii, and H. Nishikawa et al, “Assembling
gold nanoparticles by dielectrophoresis with pit arrays on PMMA fabricated by proton beam writing,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms, Vol 456, pp. 60-63, 2019.
[21]T. Shibuya, S. Uchida, Y. Ishii, and H. Nishikawa, “Trapping of a Single
Microparticle Using AC Dielectrophoresis Forces in a Microfluidic
Chip,” Micromachines, Vol 14, no 1, pp. 59, 2023.
[22]K. T. Liao, and C. F. Chou, “Nanoscale molecular traps and dams for
ultrafast protein enrichment in high-conductivity buffers,” Journal of the
American Chemical Society, Vol 134, no 21 , pp. 8742-8745, 2012.
[23]A. Sonnenberg, J. Y. Marciniak, E. A. Skowronski, S. Manouchehri, L.
Rassenti, E. M. Ghia, F. Widhopf, T. J. Kipps, and M. J. Heller,
“Dielectrophoretic Isolation and Detection of Cancer Related Circulating Cell Free DNA Biomarkers from Blood and Plasma,” Electrophoresis, Vol. 35, pp. 1828-1836, 2014.
[24]M. Mohammadi, H. Madadi, J. Casals-Terré, and J. Sellarés,
“Hydrodynamic and direct-current insulator-based dielectrophoresis (HDC-iDEP) microfluidic blood plasma separation,” Analytical and bioanalytical chemistry, Vol 407, pp. 4733-4744, 2015.
[25]A. Nakano, F. Camacho-Alanis, and A. Ros, “Insulator-based dielectrophoresis with β-galactosidase in nanostructured devices,”Analyst, Vol 140. no 3, pp. 860-868, 2015.
[26]M. Lin, and R. K. Anand , “High-throughput selective capture of single
circulating tumor cells by dielectrophoresis at a wireless electrode array,” Journal of the American Chemical Society, Vol 139, no 26, pp.8950-8959, 2017.
[27]J. Zhang, D. Yuan, Q. Zhao, S. Yan, and S. Y. Tang et al, “Tunable
particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device,” Sensors and Actuators B: Chemical, Vol 267, pp.14-25, 2018.
[28]Mohamed Zackria Ansar B .I, M. Y. Caffiyar, and M. K. A, “Microfluidic
device for Multitarget separation using DEP techniques and its applications in clinical research,” In: 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII). IEEE,pp. 1-6, 2020.
[29]M. Hata, M. Suzuki, and T. Yasukawa, “Selective retrieval of antibodysecreting hybridomas in cell arrays based on the dielectrophoresis,”
Biosensors and Bioelectronics, Vol 209, no 114250, 2022.
[30]S. P. Balk, Y. J. Ko, and G. J. Bubley, “Biology of prostate-specific
antigen,” Journal of clinical oncology, Vol 21, no 2, pp.383-391, 2003.
[31]W. J. Catalona, D. S. Smith, and T. L. Ratliff et al, “Measurement of
prostate-specific antigen in serum as a screening test for prostate
cancer,” New England journal of medicine, Vol 324, no 17, pp. 1156-
1161, 1991.
[32]李振羽, “無電極式介電泳晶片交流電動現象之研究,” 義守大學機械與自動化工程學系碩士在職專班碩士論文. 2011.[33]W. Zhang, H. Wu, R. Zhang, X. Fang, and W. Xu, “Structure and effective charge characterization of proteins by a mobility capillary electrophoresis based method,” Chemical science, Vol 10, no 33, pp.7779-7787, 2019.
[34]沈文駿, “單根氧化釩奈米線的電性及光學性質研究,” 國立交通大學應用化學研究所碩士班碩士論文, 2010.
[35]B. J. Sanghavi, W. Varhue, J. L. Chávez, C. F. Chou, and N. S. Swami,“Electrokinetic preconcentration and detection of neuropeptides at patterned graphene-modified electrodes in a nanochannel.” Analytical chemistry, Vol 86, no 9, pp. 4120-4125, 2014.
[36]A. Rohani, W. Varhue, K. T. Liao, C. F. Chou, and Swami.N. S, “Nanoslit
design for ion conductivity gradient enhanced dielectrophoresis for ultrafast biomarker enrichment in physiological media,”Biomicrofluidics, Vol 10, no 3, 033109, 2016.
[37]A. Rohani, B. J. Sanghavi, A. Salahi, K. T. Liao, and C. F. Chou,Swami.N. S, “Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization,” Nanoscale, Vol 9, no 33, pp. 12124-12131, 2017.
[38]K. T. Liao, M. Tsegaye, V. Chaurey, C. F. Chou, and Swami. N. S,“Nano‐constriction device for rapid protein preconcentration in
physiological media through a balance of electrokinetic forces,”Electrophoresis, Vol 33, no 13, pp. 1958-1966, 2012.
[39]M. Azadi, and G. G. Lopez, “Spin Curves for MicroChem S1800 (1805, 1813, 1818) Series Positive Resist,” University of Pennsylvania Scholarly Commons , 2016.
[40]張揚愉, “三維微流道無電極式介電泳晶片於微量蛋白質富集及快速偵測,” 國立虎尾科技大學自動化工程系碩士班碩士論文, 2019.[41]C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, “A fast prototyping
process for fabrication of microfluidic systems on soda-lime glass,”
Journal of Micromechanics and Microengineering, 2001, Vol 11,no 6,
pp. 726, 2011.
[42]N. Mandal, V. Pakira, N. Samanta, N. Das, and S. Chakraborty et al , “PSA detection using label free graphene FET with coplanar electrodes based microfluidic point of care diagnostic device,” Talanta, vol 222,121581, 2021.
[43]楊政穎, “血液在微流道中受介電泳作用之數值模型探討研究成果報告,” 行政院國家科學委員會專題研究計畫成果報告, 2007.
[44]H. Fischer, I. Polikarpov and A. F. Craievich, “Average protein density
is a molecular-weight-dependent function,” Protein Sci, Vol. 13, no. 10, pp. 2825-2828, 2004.