|
[1]“Wikiwand - 太陽能電池,” Wikiwand. https://wikiwand.com/zh-tw/太阳能电池 (accessed Feb. 18, 2023). [2]S. C. Watthage, Z. Song, A. B. Phillips, and M. J. Heben, “Evolution of perovskite solar cells,” in Perovskite Photovoltaics, Elsevier, 2018, pp. 43–88. doi: 10.1016/B978-0-12-812915-9.00003-4. [3]S. Lee, S. Bae, D. Kim, and H. Lee, “Historical analysis of high‐efficiency, large‐area solar cells: Toward upscaling of perovskite solar cells,” Adv. Mater., vol. 32, no. 51, p. 2002202, Dec. 2020, doi: 10.1002/adma.202002202. [4]“Snapshot.” Accessed: Jul. 05, 2023. [Online]. Available: https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=7fc53152-919d-4c2b-98e5-b0521cd9239c [5]A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN solar cells: Present state of the Art and important challenges,” IEEE J. Photovoltaics, vol. 2, no. 3, pp. 276–293, Jul. 2012, doi: 10.1109/JPHOTOV.2012.2193384. [6]“Snapshot.” Accessed: Jul. 05, 2023. [Online]. Available: https://zh.wikipedia.org/zh-tw/%E7%BA%A4%E9%94%8C%E7%9F%BF [7]A. Antony and M. Jayaraj, “Preparation and characterisation of certain II-VI, I-III-VI2 semiconductor thin films and transparent conducting oxides,” Jul. 2023. [8]W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519. [9]A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—A review,” Renewable and Sustainable Energy Reviews, vol. 28, pp. 654–663, Dec. 2013, doi: 10.1016/j.rser.2013.08.026. [10]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, May 2009, doi: 10.1021/ja809598r. [11]L. Etgar, P. Gao, Z. Xue, Q. Peng, A. Kumar, B. Liu, Md. K. Nazeeruddin, and M. Gratzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc., vol. 134, no. 42, pp. 17396–17399, Oct. 2012, doi: 10.1021/ja307789s. [12]H.-S. Kim, C.-R. Lee, J.-H. lm, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphy-Barker, J.-H. Yum, Jacques E. Moser, M. Gratzel, and N.-G. Park, “Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci Rep, vol. 2, no. 1, p. 591, Aug. 2012, doi: 10.1038/srep00591. [13]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, vol. 338, no. 6107, pp. 643–647, Nov. 2012, doi: 10.1126/science.1228604. [14]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat Commun, vol. 4, no. 1, p. 2761, Nov. 2013, doi: 10.1038/ncomms3761. [15]M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395–398, Sep. 2013, doi: 10.1038/nature12509. [16]J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Lett., vol. 13, no. 4, pp. 1764–1769, Apr. 2013, doi: 10.1021/nl400349b. [17]M. Saliba, T. Mastsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tree, A. Abate, A. Hagfeldt, and M. Gratzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci., vol. 9, no. 6, pp. 1989–1997, 2016, doi: 10.1039/C5EE03874J. [18]W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo,E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layer for efficient solar cells, ” Science, vol. 356, no. 6345, pp. 1376-1379, Jun. 2017, doi:10.1126/science.aan2301. [19]Y. An, A. Shang, G. Cao, S. Wu, D. Ma, and X. Li, “Perovskite solar cells: optoelectronic simulation and optimization,” Sol. RRL, vol. 2, no. 11, p. 1800126, Nov. 2018, doi: 10.1002/solr.201800126. [20]F. Azri, A. Meftah, N. Sengouga, and A. Meftah, “Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell,” Solar Energy, vol. 181, pp. 372–378, Mar. 2019, doi: 10.1016/j.solener.2019.02.017. [21]M. R. Jani, M. T. Islam, S. M. A. Amin, M. S. U. Sami, K. M. Shorowordi, M. I. Hossain, S. Chowdhury, S. S. Nishat, and S. Ahmed, “Exploring solar cell performance of inorganic Cs2TiBr6 halide double perovskite: A numerical study,” Superlattices and Microstructures, vol. 146, p. 106652, Oct. 2020, doi: 10.1016/j.spmi.2020.106652. [22]K. Shivesh, I. Alam, A. K. Kushwaha, M. Kumar, and S. V. Singh, “Investigating the theoretical performance of CS2TIBR6‐based perovskite solar cell with La‐doped BASNO 3 and CUSBS2 as the charge transport layers,” Intl J of Energy Research, vol. 46, no. 5, pp. 6045–6064, Apr. 2022, doi: 10.1002/er.7546. [23]G. M. Dzifack Kenfack, F. Tchangnwa Nya, and A. Laref, “Towards high tin‐based halide organic‐inorganic perovskite photovoltaic cells efficiency improvement: SCAPS 1D modeling,” Intl J of Energy Research, vol. 46, no. 7, pp. 8962–8976, Jun. 2022, doi: 10.1002/er.7774. [24]M. Kumar, A. Raj, A. Kumar, and A. Anshul, “Computational analysis of bandgap tuning, admittance and impedance spectroscopy measurements in lead‐free MASNI 3 perovskite solar cell device,” Intl J of Energy Research, vol. 46, no. 8, pp. 11456–11469, Jun. 2022, doi: 10.1002/er.7942. [25]O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle, and S. Kurtz, “Characterization and analysis of InGaN photovoltaic devices,” in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., Lake buena Vista, FL, USA: IEEE, 2005, pp. 37–42. doi: 10.1109/PVSC.2005.1488064. [26]H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1−xN tandem PV structures,” Solar Energy Materials and Solar Cells, vol. 87, no. 1–4, pp. 595–603, May 2005, doi: 10.1016/j.solmat.2004.08.020. [27]C. Yang, X. Wang, H. Xiao, J. Ran, C. Wang, G. Hu, X. Wang, X. Zhang, J. Li, and J. Li, “Photovoltaic effects in InGaN structures with p-n junctions,” phys. stat. sol. (a), vol. 204, no. 12, pp. 4288–4291, Dec. 2007, doi: 10.1002/pssa.200723202. [28]O. Jani, H. Yu, E. Trybus, B. Jampana, I. Ferguson, A. Doolittle, and C. Honsberg, “Effect of phase separation on performance of III-V nitride solar cells,” 2007. [29]X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. Li, “Simulation of In0.65Ga0.35N single-junction solar cell,” J. Phys. D: Appl. Phys., vol. 40, no. 23, pp. 7335–7338, Dec. 2007, doi: 10.1088/0022-3727/40/23/013. [30]S.-W. Feng, C.-M. Lai, C.-H. Chen, W.-C. Sun, and L.-W. Tu, “Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells,” Journal of Applied Physics, vol. 108, no. 9, p. 093118, Nov. 2010, doi: 10.1063/1.3484040. [31]M.-H. Wu, S.-P. Chang, S.-J. Chang, R.-H. Horng, W.-Y. Liao, and R.-M. Lin, “Characteristics of GaN/InGaN double-heterostructure photovoltaic cells,” International Journal of Photoenergy, vol. 2012, pp. 1–5, 2012, doi: 10.1155/2012/206174. [32]M. Nawaz and A. Ahmad, “A TCAD-based modeling of GaN/InGaN/Si solar cells,” Semicond. Sci. Technol., vol. 27, no. 3, p. 035019, Mar. 2012, doi: 10.1088/0268-1242/27/3/035019. [33]S.-W. Feng, C.-M. Lai, C.-Y. Tsai, Y.-R. Su, and L.-W. Tu, “Modeling of InGaN p-n junction solar cells,” Opt. Mater. Express, vol. 3, no. 10, p. 1777, Oct. 2013, doi: 10.1364/OME.3.001777. [34]H. Movla, M. Babazadeh, and S. V. Esmaeili, “A study on the effects of amphoteric defect concentration on the characteristics parameters of InxGa1−xN thin-film solar cells,” Appl. Phys. A, vol. 122, no. 7, p. 672, Jul. 2016, doi: 10.1007/s00339-016-0183-8. [35]Y. Marouf, L. Dehimi, and F. Pezzimenti, “Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells,” Superlattices and Microstructures, vol. 130, pp. 377–389, Jun. 2019, doi: 10.1016/j.spmi.2019.05.004. [36]M. O. Moustafa and T. Alzoubi, “Numerical simulation of single junction InGaN solar cell by SCAPS,” KEM, vol. 821, pp. 407–413, Sep. 2019, doi: 10.4028/www.scientific.net/KEM.821.407. [37]S. M. Bedair, M. F. Lamorte, and J. R. Hauser, “A two‐junction cascade solar‐cell structure,” Appl. Phys. Lett., vol. 34, no. 1, pp. 38–39, Jan. 1979, doi: 10.1063/1.90576. [38]Z. Li, H. Xiao, X. Wang, C. Wang, Q. Deng, L. Jing, J. Ding, and X. Hou, “Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell,” Physica B: Condensed Matter, vol. 414, pp. 110–114, Apr. 2013, doi: 10.1016/j.physb.2013.01.026. [39]J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee, and T. Buonassisi, “A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction,” Appl. Phys. Lett., vol. 106, no. 12, p. 121105, Mar. 2015, doi: 10.1063/1.4914179. [40]C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleo, and M. D. McGehee, “Semi-transparent perovskite solar cells for tandems with silicon and CIGS,” Energy Environ. Sci., vol. 8, no. 3, pp. 956–963, 2015, doi: 10.1039/C4EE03322A. [41]P. Löper, S.-J. Moon, S. M. D. Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat, J.-H. Yum, S. D. Wolf, and C. Ballif, “Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells,” Phys. Chem. Chem. Phys., vol. 17, no. 3, pp. 1619–1629, 2015, doi: 10.1039/C4CP03788J. [42]A. Singh and A. Gagliardi, “Efficiency of all-perovskite two-terminal tandem solar cells: A drift-diffusion study,” Solar Energy, vol. 187, pp. 39–46, Jul. 2019, doi: 10.1016/j.solener.2019.05.006. [43]N. Singh, A. Agarwal, and M. Agarwal, “Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell,” Solar Energy, vol. 208, pp. 399–410, Sep. 2020, doi: 10.1016/j.solener.2020.08.003. [44]M. Mousa, F. Z. Amer, R. I. Mubarak, and A. Saeed, “Simulation of optimized high-current tandem solar-cells with efficiency beyond 41%,” IEEE Access, vol. 9, pp. 49724–49737, 2021, doi: 10.1109/ACCESS.2021.3069281. [45]A. U. Duha and M. F. Borunda, “Optimization of a Pb-free all-perovskite tandem solar cell with 30.85% efficiency,” Optical Materials, vol. 123, p. 111891, Jan. 2022, doi: 10.1016/j.optmat.2021.111891. [46]R. Strandberg, “Detailed balance analysis of area de-coupled double tandem photovoltaic modules,” Appl. Phys. Lett., vol. 106, no. 3, p. 033902, Jan. 2015, doi: 10.1063/1.4906602. [47]“Energy of Photon | PVEducation.” https://www.pveducation.org/pvcdrom/properties-of-sunlight/energy-of-photon (accessed Feb. 18, 2023). [48]J. L. Gray, “The physics of the solar cell,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, Eds., Chichester, UK: John Wiley & Sons, Ltd, 2011, pp. 82–129. doi: 10.1002/9780470974704.ch3. [49]“太陽能電池-0927new.pdf.” Accessed: Feb. 18, 2023. [Online]. Available: https://physcourse.thu.edu.tw/galechu/wp-content/uploads/sites/8/2018/09/%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0-0927new.pdf [50]“IV 曲線 | PV教育.” https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve (accessed Feb. 18, 2023). [51]T. Nozawa and Y. Arakawa, “Detailed balance limit of the efficiency of multilevel intermediate band solar cells,” Appl. Phys. Lett., vol. 98, no. 17, p. 171108, Apr. 2011, doi: 10.1063/1.3583587. [52]A. Niemegeer, M. Burgelman, K. Decock, J. Verschraegen, and S. Degrave, “SCAPS manual,” University of Gent, 2021. [53]P. Yang, P. Liu, S. Ullah, J. Wang, L. Liu, S.-E. Yang, H. Guo, L. Wang, and Y. Chen, “The investigation of CsPb(I1−xBrx)3/crystalline silicon two- and four-terminal tandem solar cells,” Solar Energy, vol. 216, pp. 145–150, Mar. 2021, doi: 10.1016/j.solener.2021.01.041. [54]H. Alipour and A. Ghadimi, “Optimization of lead-free perovskite solar cells in normal-structure with WO 3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation,” Optical Materials, vol. 120, p. 111432, Oct. 2021, doi: 10.1016/j.optmat.2021.111432. [55]N. K. Sinha, D. S. Ghosh, and A. Khare, “Role of built-in potential over ETL/perovskite interface on the performance of HTL-free perovskite solar cells,” Optical Materials, vol. 129, p. 112517, Jul. 2022, doi: 10.1016/j.optmat.2022.112517. [56]Z. ul Abdin, I. Qasim, O. Ahmad, and M. Rashid, “Numerical modelling analysis of (FA)0.85Cs0.15Pb(I0.85 Br0.15)3: (FAPI)-based perovskite solar cell with different ETMs using solar capacitance simulator,” Solar Energy, vol. 228, pp. 100–119, Nov. 2021, doi: 10.1016/j.solener.2021.09.054. [57]F. Jannat, S. Ahmed, and M. A. Alim, “Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D,” Optik, vol. 228, p. 166202, Feb. 2021, doi: 10.1016/j.ijleo.2020.166202. [58]H. U. Manzoor, M. A. M. Zawawi, M. Z. Pakhuruddin, S. S. Ng, and Z. Hassan, “High conversion and quantum efficiency indium-rich p-InGaN/p-InGaN/n-InGaN solar cell,” Physica B: Condensed Matter, vol. 622, p. 413339, Dec. 2021, doi: 10.1016/j.physb.2021.413339. [59]K.-F. Chen and C.-L. Hung, “Numerical study of InGaN tandem solar cells with intermediate bands,” Phys. Status Solidi RRL, vol. 11, no. 2, p. 1600429, Feb. 2017, doi: 10.1002/pssr.201600429. [60]G. F. Brown, J. W. Ager, W. Walukiewicz, and J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” Solar Energy Materials and Solar Cells, vol. 94, no. 3, pp. 478–483, Mar. 2010, doi: 10.1016/j.solmat.2009.11.010. [61]F. Baig, Y. H. Khattak, B. Marí, S. Beg, A. Ahmed, and K. Khan, “Efficiency enhancement of CH3NH3SnI3 solar cells by device modeling,” Journal of Elec Materi, vol. 47, no. 9, pp. 5275–5282, Sep. 2018, doi: 10.1007/s11664-018-6406-3.
|