|
[1]P. Zhuang, K. Li, D. Li, H. Qiao, M. Wang, J. Sun, X. Mei, D. Li, Assembly of carbon dots into frameworks with enhanced stability and antibacterial activity, Nanoscale Research Letters 16 (2021) 1-10. [2]S. Bhatnagar, E.S. Cowley, S.H. Kopf, P.C. Sherlynette, S. Kearney, S.C. Dawson, K. Hanselmann, S. Ruff, Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom, Environmental Microbiome 15 (2020) 1-17. [3]L.G. Harris, S. Foster, R.G. Richards, An introduction to staphylococcus aureus, and techniques for identifying and quantifying s. aureus adhesins in relation to adhesion to biomaterials: review, Eur Cell Mater 3 (2002) 100-120. [4]M.S. Gangan, C.A. Athale, Threshold effect of growth rate on population variability of escherichia coli cell lengths, Royal Society Open Science 2 (2017) 160417. [5]R. Coico, Gram staining, Current Protocols in Microbiology 1 (2006). [6]L.B. Rice, Antimicrobial resistance in gram positive bacteria, American Journal of Infection Control 5 (2006) 11-19. [7]R.M. Patricia, C. De Los Reyes-Gavilán, Invited review: methods for the screening isolation, and characterization of exopolysaccharides produced by lactic acid bacteria, Journal of dairy science 3 (2005) 843-856. [8]G.W. Lau, D.J. Hassett, H. Ran, F. Kong, The role of pyocyanin in pseudomonas aeruginosa infection, Trends in molecular medicine 10 (2004) 599-606. [9]A. Hinton, K. Trinh, J. Brooks, G. Manderson, Thermophile survival in milk fouling and on stainless steel during cleaning, Food And Dioproducts Pocessing 4 (2002) 299-304. [10]J.D. Brooks, S.H. Flint, Biofilms in the food industry: problems and potential solutions, International Journal Of Food Science & Technology 43 (2008) 2163-2176. [11]T.R. Garrett, M. Bhakoo, Z. Zhang, Bacterial adhesion and biofilms on surfaces, Progress In Natural Science 9 (2008) 1049-1056. [12]J. El, Drinking Water Microbial Communities, 1 (2018) 194. [13]T.T. Gupta, H. Ayan, Application of non-thermal plasma on biofilm: a review, Applied Sciences 17 (2019) 3548. [14]R.M. Donlan, Biofilm formation: a clinically relevant microbiological process, Clinical Infectious Diseases 8 (2001) 1387-1392. [15]N. Rabin, Y. Zheng, C. Opoku-Temeng, Y. Du, E. Bonsu, H.O. Sintim, Biofilm formation mechanisms and targets for developing antibiofilm agents, Future Medicinal Chemistry 4 (2015) 493-512. [16]M. Toyofuku, T. Inaba, T. Kiyokawa, N. Obana, Y. Yawata, N. Nomura, Environmental factors that shape biofilm formation, Bioscience Biotechnology and Biochemistry 80 (2016) 7-12. [17]R.M. Shadid, N.R. Sadaqah, L. Abu, W.M. Al-Omari, Porcelain fracture of metal-ceramic tooth-supported and implant-supported restorations: A review, Open Journal of Stomatology 8 (2013) 411. [18]D. Xie, L. Howard, R. Almousa, Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function, Journal of Biomaterials Applications 3 (2018) 340-351. [19]Z. Huang, H. Ghasemi, Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability, Advances in Colloid and Interface Science 284 (2020) 102264. [20]R. Almousa, X. Wen, S. Na, G. Anderson, D. Xie, Hydrophilic polymer‐coated PVC surface for reduced cell and bacterial adhesions, Biosurface and Biotribology 8 (2022) 34-43. [21]J.H. Lee, H.B. Lee, J.D. Andrade, Blood compatibility of polyethylene oxide surfaces, Progress in Polymer Science 6 (1995) 1043-1079. [22]M.A. Bag, L.M. Valenzuela, Impact of the hydration states of polymers on their hemocompatibility for medical applications: A review, International Journal of Molecular Sciences 8 (2017) 1422. [23]S. Chen, L. Li, C. Zhao, J. Zheng, Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials, Polymer 23 (2010) 5283-5293. [24]G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic Surfaces, Biomaterials 29 (2007) 4192-4199. [25]C. Wen, H. Guo, H. Bai, T. Xu, M. Liu, J. Yang, Y. Zhu, W. Zhao, J. Zhang, M. Cao, Beetle-inspired hierarchical antibacterial interface for reliable fog harvesting, ACS Applied Materials & Interfaces 11 (2019) 34330-34337. [26]A. Erfani, J. Seaberg, C.P. Aichele, J.D. Ramsey, Interactions between biomolecules and zwitterionic moieties: a review, Biomacromolecules 7 (2020) 2557-2573. [27]Q. Quan, H. Gong, M. Chen, Preparation of semifluorinated poly (meth) acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent: facilitating surface fabrication with fluorinated materials, Polymer Chemistry 9 (2018) 4161-4171. [28]N. Stobie, B. Duffy, J. Colreavy, P. McHale, S.J. Hinder, D.E. McCormack, Dual-action hygienic coatings: benefits of hydrophobicity and silver ion release for protection of environmental and clinical surfaces, Journal of Colloid and Interface Science 2 (2010) 286-292. [29]L. Liang, M. J Lis Arias, Z. Lou, Q. Mao, C. Ye, X. Meng, Preparation of hydrophobic fabrics and effect of fluorine monomers on surface properties, Journal of Engineered Fibers and Fabrics 14 (2019) 1-9. [30]W. Chen, V. Karde, T.N. Cheng, S.S. Ramli, J.Y. Heng, Surface hydrophobicity: effect of alkyl chain length and network homogeneity, Frontiers of Chemical Science and Engineering 15 (2021) 90-98. [31]S. Takeshita, A. Konishi, Y. Takebayashi, S. Yoda, K. Otake, Aldehyde approach to hydrophobic modification of chitosan aerogels, Biomacromolecules 7 (2017) 2172-2178. [32]J.A. Callow, M.E. Callow, Trends in the development of environmentally friendly fouling-resistant marine coatings, Nature Communications 2 (2011) 1-10. [33]J. Genzer, K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review, Biofouling 5 (2006) 339-360. [34]W. Barthlott, C. Neinhuis, Purity of the sacred lotus or escape from contamination in biological surfaces, Planta 202 (1997) 1-8. [35]X.Q. Feng, X. Gao, Z. Wu, L. Jiang, Q.S. Zheng, Superior water repellency of water strider legs with hierarchical structures: experiments and analysis, Langmuir 9 (2007) 4892-4896. [36]Z. Cao, M.J. Stevens, J.M.Y. Carrillo, A.V. Dobrynin, Adhesion and wetting of soft nanoparticles on textured surfaces: transition between wenzel and cassie–baxter states, Langmuir 5 (2015) 1693-1703. [37]E. Bormashenko, Wenzel and Cassie–Baxter equations as the transversality conditions for the variational problem of wetting, Colloids and Surfaces A: Physicochemical and Engineering Aspects 3 (2009) 163-165. [38]C. Baum, W. Meyer, R. Stelzer, L.G. Fleischer, D. Siebers, Average nanorough skin surface of the pilot whale (globicephala melas delphinidae): considerations on the self-cleaning abilities based on nanoroughness, Marine Biology 3 (2002) 653-657. [39]A. Gillett, D. Waugh, J. Lawrence, M. Swainson, R. Dixon, Laser surface modification for the prevention of biofouling by infection causing Escherichia Coli, Journal of Laser Applications 2 (2016) 22503. [40]A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity, RSC Advances 5 (2019) 2673-2702. [41]J. Li, K. Rong, H. Zhao, F. Li, Z. Lu, R. Chen, Highly selective antibacterial activities of silver nanoparticles against bacillus subtilis, Journal of Nanoscience and Nanotechnology 10 (2013) 6806-6813. [42]J. An, M. Zhang, S. Wang, J. Tang, Physical chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP, LWT-Food Science and Technology 6 (2008) 1100-1107. [43]I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry, International Journal of Nanomedicine 15 (2020) 2555. [44]I.A. Jones, L.T. Joshi, Biocide use in the antimicrobial era: A review, Molecules 8 (2021) 2276. [45]P. Gilbert, A. Al‐Taae, Antimicrobial activity of some alkyltrimethylammonium bromides, Letters in Applied Microbiology 6 (1985) 101-104. [46]F. Wang, L. Huang, P. Zhang, Y. Si, J. Yu, B. Ding, Antibacterial N-halamine fibrous materials, Composites Communications 22 (2020) 100487. [47]L. Qian, G. Sun, Durable and regenerable antimicrobial textiles: Synthesis and applications of 3‐methylol‐2, 2, 5, 5‐tetramethyl‐imidazolidin‐4‐one (MTMIO), Journal of Applied Polymer Science 9 (2003) 2418-2425. [48]F. Hui, C. Debiemme, Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications, Biomacromolecules 3 (2013) 585-601. [49]L. Cen, K. Neoh, E. Kang, Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces, Langmuir 19 (2003) 10295-10303. [50]O. Gutman, M. Natan, E. Banin, S. Margel, Characterization and antibacterial properties of N-halamine-derivatized cross-linked polymethacrylamide nanoparticles, Biomaterials 19 (2014) 5079-5087. [51]A. Isquith, E. Abbott, P. Walters, Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride, Applied Microbiology 6 (1972) 859-863. [52]X. Li, Y. Liu, Y. Liu, J. Du, R. Li, X. Ren, T.-S. Huang, Biocidal activity of N-halamine methylenebisacrylamide grafted cotton, Journal of Engineered Fibers and Fabrics 2 (2015) 155. [53]A. Dong, Y.-J. Wang, Y. Gao, T. Gao, G. Gao, Chemical insights into antibacterial N-halamines, Chemical Reviews 6 (2017) 4806-4862. [54]J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science 284 (1999) 1318-1322. [55]Y. Zou, Y. Zhang, Q. Yu, H. Chen, Dual function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously, Journal of Materials Science & Technology 70 (2021) 24-38. [56]K. Ding, Y. Wang, S. Liu, S. Wang, J. Mi, Preparation of medical hydrophilic and antibacterial silicone rubber via surface modification, RSC Advances 63 (2021) 39950-39957. [57]Q. Yu, Z. Wu, H. Chen, Dual function antibacterial surfaces for biomedical applications, Acta Biomaterialia 16 (2015) 1-13. [58]T. Ren, M. Yang, K. Wang, Y. Zhang, J. He, CuO nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property, ACS Applied Materials & Interfaces 30 (2018) 25717-25725. [59]C. Xu, J. Jiang, H. Oguzlu, Y. Zheng, F. Jiang, Antifouling antibacterial and non-cytotoxic transparent cellulose membrane with grafted zwitterion and quaternary ammonium copolymers, Carbohydrate Polymers 250 (2020) 116960. [60]R.N. Tharanathan, F.S. Kittur, Chitin the undisputed biomolecule of great potential, Critical Reviews in Food Science and Nutrition 43 (2003) 61-78. [61]V. Dodane, V.D. Vilivalam, Pharmaceutical applications of chitosan, Pharmaceutical Science & Technology Today 1 (1998) 246-253. [62]S.G. Kou, L.M. Peters, M.R. Mucalo, Chitosan: A review of sources and preparation methods, International Journal of Biological Macromolecules 169 (2021) 85-94. [63]T. Kean, M. Thanou, Chitin and chitosan: sources, production and medical applications, Renewable Resources for Functional Polymers and Biomaterials 10 (2011) 292-318. [64]T.A. Khan, K.K. Peh, H.S. Chng, Reporting degree of deacetylation values of chitosan: the influence of analytical methods, pharm Pharmaceut Sci 2 (2002) 205-212. [65]E. Akpan, O. Gbenebor, S. Adeosun, O. Cletus, Solubility, degree of acetylation, and distribution of acetyl groups in chitosan, Handbook of Chitin and Chitosan 1 (2020) 131-164. [66]Q.Z. Wang, X.G. Chen, N. Liu, S.X. Wang, C.S. Liu, X.H. Meng, C.G. Liu, Protonation constants of chitosan with different molecular weight and degree of deacetylation, Carbohydrate polymers 65 (2006) 194-201. [67]C. Qin, Y. Du, L. Xiao, Z. Li, X. Gao, Enzymic preparation of water soluble chitosan and their antitumor activity, International Fournal of Biological Macromolecules 31 (2002) 111-117. [68]V. Mourya, N.N. Inamdar, Chitosan modifications and applications: Opportunities galore, Reactive and Functional Polymers 5 (2008) 1013-1051. [69]S. Mima, M. Miya, R. Iwamoto, S. Yoshikawa, Highly deacetylated chitosan and its properties, Journal of Applied Polymer Science 6 (1983) 1909-1917. [70]H. Chopra, G. Ruhi, Eco friendly chitosan: An efficient material for water purification, The Pharma Innovation 5 (2016) 92-95. [71]M. Hosseinnejad, S.M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan, International Journal of Biological Macromolecules 85 (2016) 467-475. [72]J. Li, S. Zhuang, Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives, European Polymer Journal 138 (2020) 109984. [73]Z.X. Peng, L. Wang, L. Du, S.R. Guo, X.Q. Wang, T.T. Tang, Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium, Carbohydrate Polymers 2 (2010) 275-283. [74]D. Kücken, H.H. Feucht, P.M. Kaulfers, Association of qacE and qacE Δ1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria, FEMS Microbiology Letters 183 (2000) 95-98. [75]Z. Li, W. Hu, Y. Zhao, L. Ren, X. Yuan, Integrated antibacterial and antifouling surfaces via cross linking chitosangeugenol/zwitterionic copolymer on electrospun membranes, Colloids and Surfaces B: Biointerfaces 169 (2018) 151-159. [76]Z. Cao, Y. Sun, N‐halamine based chitosan Preparation characterization and antimicrobial function, Journal of Biomedical Materials Research 85 (2008) 99-107. [77]H. Gundersen, H.P. Leinaas, C. Thaulow, Surface structure and wetting characteristics of Collembola cuticles, PLoS One 2 (2014) 86783. [78]J.J. Lozeman, P. Führer, W. Olthuis, M. Odijk, Spectroelectrochemistry the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques, Analyst 7 (2020) 2482-2509. [79]L. Barbeş, C. Rădulescu, C. Stihi, ATR-FTIR spectrometry characterisation of polymeric materials, Romanian Reports in Physics 3 (2014) 765-777. [80]A. Mukhopadhyay, Measurement of magnetic hysteresis loops in continuous and patterned ferromagnetic nanostructures by static magneto optical kerr effect magnetometer, Satyendra Nath Bose National Centre for Basic Sciences, Guwahati 3 (2015) 1894-1974. [81]A. Drabczyk, S. Kramarczyk, M. Głąb, M. Kędzierska, A. Jaromin, D. Mierzwiński, B. Tyliszczak, Physicochemical investigations of chitosan based hydrogels containing aloe Vera designed for biomedical use, Materials 14 (2020) 3073. [82]P.J. Mears, S. Koirala, C.V. Rao, I. Golding, Y.R. Chemla, Escherichia coli swimming is robust against variations in flagellar number, Elife 31 (2014) 1916.
|