|
中文 [1]內政部 (2013)。不動產估價技術規則。全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0060077(擷取日期 2021/07/21) [2]內政部 (2021)。內政部不動產交易實價查詢服務網。內政部。https://lvr.land.moi.gov.tw/(擷取日期2021/08/05) [3]公職王資訊網(2021)。不動產估價師高考錄取率與錄取人數歷年統計。公職王資訊網。https://www.public.com.tw/exam-license/appraiser-quota(擷取日期2021/06/08) [4]毛麗琴(2009)。房屋價格預測模型分析-以高雄市區爲例。商業現代化學刊,5(1),31-42。 [5]江穎慧(2009)。不動產自動估價與估價師個別估價之比較-以比較法之案例選取、權重調整與估值三階段差異分析。住宅學報,18(1),39-62。 [6]沈育生、林秋瑾(2012)。不同人工神經網路架構在不動產大量估價之應用與比較。臺灣土地研究,15(1),1-29。 [7]林祖嘉、馬毓駿(2007)。特徵方程式大量估價法在台灣不動產市場之應用。住宅學報,16(2),1-22。 [8]張怡文、江穎慧、張金鶚(2009)。分量迴歸在大量估價模型之應用-非典型住宅估價之改進。都市與計劃,36(3),281-304。 [9]陳奉瑤(2008)。不動產估價師之教育、考試與執業分析。國家菁英季刊,4(4),141-158。 [10]董呈煌、李春長、陳俊麟、吳韻玲(2016)。SVR與OLS在住宅價格預測正確率的比較。住宅學報,25(2),31-51。 [11]蔡瑞煌、高明志、張金鶚(1999)。類神經網路應用於戶地產估價之研究。住宅學報,(8),1-20。 [12]賴碧瑩(2007)。應用類神經網路於電腦輔助大量估價之研究。住宅學報,16(2),43-65。 [13]賴碧瑩(2014)。現代不動產估價:理論與實務(第二版),智勝文化。 [14]龔永香、江穎慧、張金鶚(2007)。客觀標準化不動產估價之可行性分析-市場比較法應用於大量估價。住宅學報,16(2),23-42。 英文 [1]Abarna P, A. R. K. M. (2021). A hybrid network model for effective house price prediction -a combination of ML algorithms. International Journal of Advanced Engineering Science and Information Technology, 4(4), 58-62. [2]Abraham, A. (2005). Artificial Neural Networks. In Handbook of Measuring System Design. John Wiley & Sons. [3]Ahtesham, M., Bawany, N. Z., & Fatima, K. (2020, November, 28-30). House Price Prediction using Machine Learning Algorithm - The Case of Karachi City, Pakistan [Paper presentation]. 2020 21st International Arab Conference on Information Technology (ACIT), Giza, Egypt. [4]Bally, L., Brittan, J., & Wagner, K. H. (1977). A prototype approach to information system design and development. Information & Management, 1(1), 21-26. [5]Carbone, R., & Longini, R. L. (1977). A feedback model for automated real estate assessment. Management Science, 24(3), 241-248. [6]Chen, T., & Guestrin, C. (2016, August, 13-17). Xgboost: a scalable tree boosting system [Paper presentation]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA. [7]Chin, W. M., Kit, N. L. W., & Fei, J. L. W. (2019, July, 8). Valuation of real estate: a multiple regression approach [Paper presentation]. Proceedings of the 2019 2nd International Conference on Mathematics and Statistics, Prague, Czech Republic. [8]Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297. [9]Cui, S., Yin, Y., Wang, D., Li, Z., & Wang, Y. (2021). A stacking-based ensemble learning method for earthquake casualty prediction. Applied Soft Computing, 101, 107038. [10]Cupal, M. (2014). The comparative approach theory for real estate valuation. Procedia - Social and Behavioral Sciences, 109, 19-23. [11]Dawidowicz, A., Radzewicz, A., & Renigier-Biłozor, M. (2014). Algorithm for purposes of determining real estate markets efficiency with help of land administration system. Survey Review, 46(336), 189-204. [12]DeLone, W. H., & McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information systems research, 3(1), 60-95. [13]Do, Q., & Grudnitski, G. (1993). A neural network analysis of the effect of age on housing values. Journal of Real Estate Research, 8(2), 253-264. [14]Eberhart, & Yuhui, S. (2001, May, 27-30). Particle swarm optimization: developments, applications and resources [Paper presentation]. Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea (South). [15]Frew, J., & Jud, G. (2003). Estimating the value of apartment buildings. Journal of Real Estate Research, 25(1), 77-86. [16]Gu, J., Zhu, M., & Jiang, L. (2011). Housing price forecasting based on genetic algorithm and support vector machine. Expert Systems with Applications, 38(4), 3383-3386. [17]Gu, Y., Zhang, D., & Bao, Z. (2021). A new data-driven predictor, PSO-XGBoost, used for permeability of tight sandstone reservoirs: A case study of member of chang 4+5, western Jiyuan Oilfield, Ordos Basin. Journal of Petroleum Science and Engineering, 199, 108350. [18]He, Y., Ma, W. J., & Zhang, J. P. (2016). The parameters selection of PSO algorithm influencing on performance of fault diagnosis. MATEC Web of Conferences, 63, 02019. [19]Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2), 415-425. [20]Ibrahem Ahmed Osman, A., Najah Ahmed, A., Chow, M. F., Feng Huang, Y., & El-Shafie, A. (2021). Extreme gradient boosting (Xgboost) model to predict the groundwater levels in selangor malaysia. Ain Shams Engineering Journal, 12(2), 1545-1556. [21]J.Avanijaa, Sunithab, G., Madhavic, K. R., Korad, P., & Vittale, R. H. S. (2021). Prediction of house price using xgboost regression algorithm. Turkish Journal of Computer and Mathematics Education, 12(2), 2115-2155. [22]Jiang, H., He, Z., Ye, G., & Zhang, H. (2020). Network intrusion detection based on PSO-Xgboost model. IEEE Access, 8, 58392-58401. [23]Kennedy, J., & Eberhart, R. (1995, November, 27-December,1). Particle swarm optimization [Paper presentation]. Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia. [24]Kontrimas, V., & Verikas, A. (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11(1), 443-448. [25]Lai, V., Ahmed, A. N., Malek, M. A., Abdulmohsin Afan, H., Ibrahim, R. K., El-Shafie, A., & El-Shafie, A. (2019). Modeling the nonlinearity of sea level oscillations in the malaysian coastal areas using machine learning algorithms. Sustainability, 11(17), 4643. [26]Le, L. T., Nguyen, H., Zhou, J., Dou, J., & Moayedi, H. (2019). Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost. Applied Sciences, 9(13), 2714. [27]Mu, J., Wu, F., & Zhang, A. (2014). Housing value forecasting based on machine learning methods. Abstract and Applied Analysis, 2014(4), 1-7. [28]Nur, A., Ema, R., Taufiq, H., & Firdaus, W. (2017). Modeling house price prediction using regression analysis and particle swarm optimization case study : malang, east java, indonesia. International Journal of Advanced Computer Science and Applications, 8(10), 323-326. [29]Ojo, A. I. (2017). Validation of the delone and mclean information systems success model. hir, 23(1), 60-66. [30]Peng, Z., Huang, Q., & Han, Y. (2019, October, 18-20). Model research on forecast of second-hand house price in chengdu based on xgboost algorithm [Paper presentation]. 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), Jinan, China. [31]Petter, S., DeLone, W., & McLean, E., 2008, Measuring information systems success: models, dimensions, measures, and interrelationships. European journal of information systems, 17(3), 236-263. [32]Rana, V. S., Mondal, J., Sharma, A., & Kashyap, I. (2020, December, 18-19). House price prediction using optimal regression techniques [Paper presentation]. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India. [33]Shi, Y., & Eberhart, R. (1998, May, 4-9 ). A modified particle swarm optimizer [Paper presentation]. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA. [34]Tay, D. P. H., & Ho, D. K. H. (1992). Artificial intelligence and the mass appraisal of residential apartments. Journal of Property Valuation and Investment, 10(2), 525-540. [35]Wang, C. (2013). Family house-purchase decision model based on analytic hierarchy process. Applied Mechanics and Materials, 423-426(6), 2973-2976. [36]Wang, X., Wen, J., Zhang, Y., & Wang, Y. (2014). Real estate price forecasting based on SVM optimized by PSO. Optik, 125(3), 1439-1443. [37]Wang, Y., Wang, D., Geng, N., Wang, Y., Yin, Y., & Jin, Y. (2019). Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Applied Soft Computing, 77, 188-204. [38]Wu, J., Liu, H., Wei, G., Song, T., Zhang, C., & Zhou, H. (2019). Flash flood forecasting using support vector regression model in a small mountainous Catchment. Water, 11(7), 1327. [39]Xiao-zhu, D., & Ling-wei, K. (2013, July, 17-19). The land prices and housing prices — empirical research based on panel data of 11 provinces and municipalities in eastern china [Paper presentation]. 2013 International Conference on Management Science and Engineering 20th Annual Conference Proceedings, Harbin, China. [40]Yahya, N., Megat Mohd Zainuddin, N., Amir Sjarif, N. N., & Fisdaus Mohd Azmi, N. (2021). Predictive visual analytics for machine learning model in house price prediction: a case study. Open International Journal of Informatics, 9(1), 1-29. [41]Yilmazer, S., & Kocaman, S. (2020). A mass appraisal assessment study using machine learning based on multiple regression and random forest. Land Use Policy, 99, 104889. [42]Yin, Y., Sun, Y., Zhao, F., & Chen, J. (2020). Improved XGBoost model based on genetic algorithm. International Journal of Computer Applications in Technology, 62(3), 240-245. [43]Zulkifley, N. H., Rahman, S. A., Ubaidullah, N. H., Ibrahim, I. J. I. J. o. M. E., & Science, C. (2020). House price prediction using a machine learning model: a survey of literature. International Journal of Modern Education and Computer Science, 12(6), 46-54.
|