|
[1]Prashant V. Kamat, “Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles”, The Journal of Physical Chemistry B, vol. 106, no. 32, pp. 7729-7744, July. 2002. [2]F. Baletto, R. Ferrando, “Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects”, Reviews of modern physics, vol. 77, no. 1, pp. 371-423, May. 2005. [3]A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, vol. 271, no. 5251, pp. 933-937, Feb. 1996. [4]H. Wu, L. Hu, M. W. Rowell, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode”, Nano Letters, vol. 10, no. 10, pp. 4242–4248, Aug. 2010. [5]J. X. Wang, X. W. Sun, Y. Yang, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications”, Nanotechnology, vol. 17, no. 19, pp. 4995-4998, Sep. 2006. [6]J. Hu, T. W. Odom, C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes”, Accounts of Chemical Research, vol. 32, no. 5, pp. 435-445, Feb. 1999. [7]Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, vol. 291, no. 5510, pp.1947-1949, Mar. 2001. [8]M. Chen, L. Hu, J. Xu, “ZnO Hollow‐Sphere Nanofilm‐Based High‐Performance and Low‐Cost Photodetector”, Nano·Micro Small, vol. 7, no. 17, pp. 2449-2453, Sep. 2011. [9]M. S. Gudiksen, L. J. Lauhon, J. Wang, “Growth of nanowire superlattice structures for nanoscale photonics and electronics”, Nature, vol. 415, no. 6872, pp. 617-620, Feb. 2002. [10]J. Chen, T. Fujita, “Effects of Annealing on Photoluminescence of ZnO Thin Film Prepared by Vapor Phase Growth”, The Japan Society of Applied Physics , vol. 42, no. 2A, pp. 602-606, Feb. 2003. [11]Q. Peng, Y. Dong, Y. Li, “ZnSe Semiconductor Hollow Microspheres”, Angewandte Chemie-International Edition, vol. 42, no. 46, pp. 3027-3030, July. 2003. [12]X. Fang, T. Zhai, U. K. Gautam, “ZnS nanostructures: From synthesis to applications”, Progress in Materials Science, vol. 56, no. 2, pp. 175-287, Feb. 2011. [13]S. D. Hersee, X. Sun, X. Wang, “The Controlled Growth of GaN Nanowires”, Nano Letters, vol. 6, no. 8, pp. 1808-1811, July. 2006. [14]X. W. Sun, H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition”, Journal of Applied Physics, vol. 86, no.1, pp. 408-411, Mar. 1999. [15]Min Zou, Li Cai, William Brown, “Nano-Aluminum-Induced Low-Temperature Crystallization of PECVD Amorphous Silicon”, Electrochemical and Solid-State Letters, vol. 8, no. 5, pp. G103-G105, Mar. 2005. [16]H. C. Shin, J. Dong, M. Liu, “Nanoporous Structures Prepared by an Electrochemical Deposition Process”, vol. 15, no. 19, pp. 1610-1614, Oct. 2003. [17]K. M. Wu, Y. Pan, C. Liu, ” InGaN nanorod arrays grown by molecular beam epitaxy: Growth mechanism structural and optical properties”, vol. 255, no. 13-14, pp. 6705-6709, Apr. 2009. [18]Kwang-Sik Kim, Hyoun Woo Kim, “Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition”, vol. 328, no. 3-4, pp. 368-371, May. 2003. [19]A. Saaedi, P. Shabani, R. Yousefi, “High performance of methanol gas sensing of ZnO/PAni nanocomposites synthesized under different magnetic field”, Journal of Alloys and Compounds, vol. 802, no. 25, pp. 335-344, Sep. 2019. [20]A. Mirzaei, S. G. Leonardi, G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review”, Ceramics International, vol. 42, no. 14, pp. 15119-15141, Nov. 2016. [21]L. Xu, R. Xing, J. Song, “ZnO–SnO2nanotubes surface engineered by Ag nanoparticles: synthesis, characterization, and highly enhanced HCHO gas sensing properties”, Journal of Materials Chemistry C, vol. 1, no. 11, pp. 2174-2182, Jan. 2013. [22]Y. Zeng, Z. Lou, L. Wang, “Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure”, Sensors and Actuators B: Chemical, vol. 156, no. 1, pp. 395-400, Aug. 2011. [23]P. P. Sahay, R. K. Nath, “Al-doped ZnO thin films as methanol sensors”, Sensors and Actuators B: Chemical, vol. 134, no. 2, pp. 654-659, Sep. 2008. [24]S. Jia, S. Hu, H. Zheng, “Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires”, Nano Letters, vol. 18, no. 7, pp. 4095-4099, June. 2018. [25]Y. N. Xu, W. Y. Ching, “Electronic, optical, and structural properties of some wurtzite crystals”, Physical Review B, vol. 48, no. 7, pp. 4335-4351, Aug. 1993. [26]J. Wrobel, J. Piechota, “On the structural stability of ZnO phases”, Solid State Communications, vol. 146, no. 7-8, pp. 324-329, May. 2008. [27]U. Ozgur, Y. I. Alivov, C. Liu, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, vol. 98, no. 4, Aug. 2005. [28]Chia-Chun Liao, 2014, “Hydrothermal Preparation of ZnO Catalysts and the Assistance of CTAB in Photocatalytic Degradation”, Degree Thesis of Department of Chemical Engineering, Chung Hsing University. [29]Wei Chi Lin, Li Chang, 2007, “A Study of Growth of ZnO Thin Films and Thin Film Transistors by Aqueous Method”, Semi-conductor Materials and Process Equipment Group, National Chiao Tung University College of Engineering. [30]Z. L. Wang, X. Y. Kong, Y. Ding, “Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces”, Advanced Functional Materials, vol. 14, no. 10, pp. 943-956, Oct. 2004. [31]U. Ozgur, D. Hofstetter, H. Morkoc, “ZnO Devices and Applications: A Review of Current Status and Future Prospects”, Proceedings of the IEEE, vol. 98, no. 7, pp. 1255-1268, May. 2010. [32]B. Meyer, D. Marx, “Density-functional study of the structure and stability of ZnO surfaces”, Physical Review B, vol. 67, no. 3, Jan. 2003. [33]Q. Zhang, C. S. Dandeneau, X. Zhou, “ZnO Nanostructures for Dye‐Sensitized Solar Cells”, Advanced Materials, vol. 21, no. 41, pp. 4087-4108, Nov. 2009. [34]K. Vanheusden, W. L. Warren, C. H. Seager, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, Journal of Applied Physics, vol. 79, no. 10, pp. 7983-7990, Feb. 1996. [35]Shu-Chi Huang, 2006, “Characterization of Reactive-Sputtered Copper doped ZnO Thin Films”, Department of Materials and Optoelectronic Science, National Sun Yat-sen University. [36]W. T. Chiou, W. Y. Wu, J. M. Ting, “Growth of single crystal ZnO nanowires using sputter deposition”, Diamond and Related Materials, vol. 12, no. 10-11, pp. 1841-1844, Nov. 2003. [37]A. F. Kohan, G. Ceder, D. Morgan, “First-principles study of native point defects in ZnO”, Physical review B, vol. 61, no. 22, pp. 15019-15027, June. 2000. [38]Chia-lung Li, Jau-Wern Chiou, 2014, “The atomic and electronic structures of nitrogen-doped ZnO thin films studied by x-ray absorption and x-ray photoelectron spectroscopy”, National Kaohsiung University. [39]Y. Chen, D. M. Bagnall, H. J. Koh, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization”, Journal of Applied Physics, vol. 84, no. 7, pp. 3912-3918, Oct. 1998. [40]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, no. 6348, pp. 56-58, Nov. 1991. [41]A.Vafafard, S. Goharshenasan, N. Nozari, “Phase-dependent optical bistability in the quantum dot nanostructure molecules via inter-dot tunneling”, Journal of Luminescence, vol. 134, pp. 900-905, Feb. 2013. [42]高濂,鄭珊,張青紅,“奈米光觸媒”,五南圖書出版股份有限公司,台灣台北,402,2004。 [43]F. C. Lin, Y. Takao, Y. Shimizu, “Hydrogen-sensing mechanism of zinc oxide varistor gas sensors”, Sensors and Actuators B: Chemical, vol. 25, no. 1-3, pp. 843-850, Apr. 1995. [44]M. H. Huang, S. Mao, P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, vol. 292, no. 5523, pp. 1897-1899, Jun. 2001. [45]Peter J. Pauzauskie, Peidong Yang, “Nanowire photonics”, vol. 9, no. 10, pp. 36-45, Oct. 2006. [46]楊尚賢博士,“矽單晶基板上之異質磊晶成長:氧化鈦、氧化鋯、氧化鋅”,博士論文,國立清華大學材料科學與工程學系,2006。 [47]黃裕銘碩士,“ZnO薄膜是用射頻磁控濺鍍法成長之參數研究與探討”,南台科技大學電子工程系研究所碩士論文,2005。 [48]Hong Xiao,“半導體製程技術導論”,歐亞書局,2002。 [49]D. D. Malinovska, N. Tzenov, M. Tzolov, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films”, Materials Science and Engineering: B, vol. 52, no. 1, pp. 59-62, Mar. 1998. [50]陳克紹、曹永偉譯,“薄膜技術”,復漢出版,2003。 [51]J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666-670, Dec. 2020. [52]Eiji Kusano, “Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review”, Applied Science and Convergence Technology, vol. 28, no. 6, pp. 179-185, Nov. 2019. [53]R. S. Wagner, W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth”, Applied Physics Letters, vol. 4, no. 5, pp. 89-90, Mar. 1964. [54]J. L. LeBoeuf, N. J. Quitoriano, “Nucleation and solidification of laterally grown silicon micro-films on amorphous substrates using the VLS mechanism”, Journal of Crystal Growth, vol. 391, no. 1, pp. 1-6, Apr. 2014. [55]Badriyah Alhalaili, Howard Mao, Saif Islam, “Ga2O3 Nanowire Synthesis and Device Applications”, Novel Nanomaterials - Synthesis and Applications, Dec. 2017. [56]P. C. Chang, Z. Fan, D. Wang, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method”, Chemistry of Materials, vol. 16, no. 24, pp. 5133-5137, Nov. 2004. [57]Chen-Yun Wang, 2007, “Zinc Oxide Nanowires Synthesized by Low-temperature Aqueous Solution Method”, Department of Materials Science and Engineering, Taipei University of Technology. [58]M. J. Zheng, L. D. Zhang, G. H. Li, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chemical Physics Letters, vol. 363, no. 1-2, pp. 123-128, Sep. 2002. [59]Y. Li, G. W. Meng, L. D. Zhang, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, vol. 76, no. 15, pp. 2011-2013, Apr. 2000. [60]Ji-Min Song, “Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth”, Scientific Reports, no. 18967, Jan. 2016. [61]H. Y. Dang, J. Wang, S. S. Fan, “The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres”, Nanotechnology, vol. 14, no. 7, pp. 738-741, May. 2003. [62]S. Y. Bae, C. W. Na, J. H. Kang, “Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation”, The Journal of Physical Chemistry B, vol. 109, no. 7, pp. 2526-2531, Jan. 2005. [63]Norm Hardy, 2013, “What is Thin Film Deposition By Thermal Evaporation”, Semicore Equipment. [64]W. Geffcken, E. Berger, Dtsch, Verfahren zur AEnderung des Reflexionsver moegens optischer Glaeser, Reichspatent 736411, May. 1939. [65]M. Kakihana, “Invited review “sol-gel” preparation of high temperature superconducting oxides”, Journal of Sol-Gel Science and Technology, vol. 6, no. 1, pp. 7-55, Jan. 1996. [66]S. Mustapha, M. M. Ndamitso, A. S. Abdulkareem, “Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review”, Applied Water Science, no. 49, Jan. 2020. [67]L. E. Greene, M. Law, J. Goldberger, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angewandte Chemie-International Edition, vol. 42, no. 26, pp. 3031-3034, July. 2003. [68]D. Lincot, “Solution growth of functional zinc oxide films and nanostructures”, MRS Bulletin, vol. 35, no. 10, pp. 778-789, Oct. 2010. [69]E. E. Finney, R. G. Finke, “Nanocluster nucleation and growth kinetic and mechanistic studies: A review emphasizing transition-metal nanoclusters”, Journal of Colloid and Interface Science, vol. 317, no. 2, pp. 351-374, Jan. 2008. [70]Zhiyong Fan, Jia G Lu, “Zinc oxide nanostructures: synthesis and properties”, J Nanosci Nanotechnol, vol. 5, no. 10, pp. 1561-1573, Oct. 2005. [71]S. Baruah, J. Dutta, “Hydrothermal growth of ZnO nanostructures”, Journal of the Science and Technology of Advanced Materials, vol. 10, no. 1, Jan. 2009. [72]D. Polsongkram, P. Chamninok, S. Pukird, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method”, Physica B: Condensed Matter, vol. 403, no. 19-20, pp. 3713-3717, Oct. 2008. [73]R. A. Laudise, A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide”, ACS Publications, vol. 64, no. 5, pp. 688-691, May. 1960. [74]W. J. Li, E. W. Shi, W. Z. Zhong, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, vol. 203, no. 1-2, pp. 186-196, May. 1996. [75]K. Govender, D. S. Boyle, P. B. Kenway, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, Journal of Materials Chemistry, vol. 14, no. 16, pp. 2575-2591, 2004. [76]Q. Ahsanulhaq, A. Umar, Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties”, Nanotechnology, vol. 18, no. 11, Feb. 2007. [77]P. X. Gao, Z. L. Wang, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process”, The Journal of Physical Chemistry B, vol. 108, no. 23, pp. 7534-7537, Apr. 2004. [78]K. Ihokura, J. Watson, “The Stannic Oxide Gas SensorPrinciples and Applications”, Engineering & Technology, Physical Sciences, 1st Edition, pp. 208, Dec. 2007. [79]G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?”, Materials Science and Engineering: B, vol. 139, no. 1, pp. 1-23, Apr. 2007. [80]E. H. Rhoderick, “Metal-semiconductor contacts”, IEE Proceedings I - Solid-State and Electron Devices, vol. 129, no. 1, Feb. 1982. [81]Ya-Ping Chang, Chien-Ping Lee, 2009, “III-V Semiconductor Rolled-up Micro-tubes and Their Photovoltaic and Thermoelectric Effects”, Department of Electronic Engineering, National Chiao Tung University. [82]R. J. Wu, “Development of Gas Sensor in Application by Nanomaterial”, Instruments Today, vol. 26, no. 3, pp. 88-94, 93.12. [83]D. K. Schroder, “Semiconductor Material and Device Characterization, Third Edition”, John Wiley & Sons, Apr. 2005. [84]J. Chem, “Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis”, The Journal of Chemical Physics, vol. 21, no. 9, pp. 1531-1539, Dec. 2004. [85]Yu-ting Kao, Wei-I Lee, 2010, “Schottky barrier photodetector on n-type freestanding GaN substrates”, Department of Electronic Physics, National Transportation University. [86]2020,酒精消毒用品或含甲醇 正確使用消毒酒精慎防中毒,Medecins Sans Frontieres. [87]K. H. Kim, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, Journal of Applied Physics, vol. 81, no. 12, pp. 7764-7772, Jun. 1998. [88]F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, et al., "Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods," Sensors and Actuators B: Chemical, vol. 241, pp. 895-903, Mar. 2017. [89]S.H. Jeong, B.-S. Kim, and B.-T. Lee, "Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient," Applied Physics Letters, vol. 82, pp. 2625-2627, 2003. [90]L. Xu, Y. L. Hu, C. Pelligra, “ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity”, Chemistry of Materials, vol. 21, no. 13, pp. 2875-2885, May. 2009. [91]2015,電子顯微鏡。 [92]S. B. Khan, M. Faisal, M. M. Rahman, “Low-temperature growth of ZnO nanoparticles: Photocatalyst and acetone sensor”, Talanta, vol. 85, no. 2, pp. 943-949, Aug. 2011. [93]程志賢,能量散射光譜儀(EDS),明志科技大學材料工程系。 [94]Y. Zheng, C. Chen, Y. Zhan, “Luminescence and Photocatalytic Activity of ZnO Nanocrystals: Correlation between Structure and Property”, Inorganic Chemistry, vol. 46, no. 16, pp. 6675-6682, July. 2007. [95]Y. H. Liu, S. J. Young, L. W. Ji, "Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method," IEEE Transactions on Electron Devices, vol. 62, pp. 2924-2927, 2015. [96]L. Yi-Hsing, Y. Sheng-Joue, J. Liang-Wen, "Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets by using an Aqueous Solution at Room Temperature," IEEE Transactions on Electron Devices, vol. 61, pp. 4192-4196, 2014. [97]M. Chen, X. Wang, Y. H. Yu, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Applied Surface Science, vol. 158, no. 1-2, pp. 134-140, May. 2000. [98]Q. Xiang, G. Meng, Y. Zhang, “Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties”, Sensors and Actuators B: Chemical, vol. 143, no. 2, pp. 635-640, Jan. 2010. [99]N. Padmavathy, R. Vijayaraghavan, “Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study”, Journal of the Science and Technology of Advanced Materials, vol. 9, no. 3, Sep. 2008. [100]TEM用鍍碳銅網,汎達科技有限公司。 [101]M. Ahmad, L. Gan, C. Pan, and J. Zhu, "Controlled synthesis and methanol sensing capabilities of Pt-incorporated ZnO nanospheres," Electrochimica Acta, vol. 55, pp. 6885-6891, 2010. [102]A. B. Djurisic, Y. H. Leung, “Optical Properties of ZnO Nanostructures”, Nano·Micro Small, vol. 2, no. 8-9, pp. 944-961, Aug. 2006. [103]Chih-En Tsai, 2015, “Structural, optical and sensing characteristics of ZnO nanorods grown on different substrates.”, Department of Optoelectronic Engineering, National Chung Hsing University. [104]C. H. Huang, Y. L. Chu, L.W. Ji, I. T. Tang, T. T. Chu, B. J. Chiou, “Fabrication and characterization of homostructured photodiodes with Li-doped ZnO nanorods,” Microsyst. Technol., vol. 1, pp. 1−7, Apr. 2020. [105]S. J. Young, L. T. Lai, “UV Illumination and Au Nanoparticles Enhanced ZnO Nanorods Field Electron Emission Device,” IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 304−308, Jan. 2020. [106]Santosh S. Patil, Mukund G. Mali, Mohaseen S. Tamboli, “Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight”, Catalysis Today, vol. 260, no. 1, pp. 126-134, Feb. 2016. [107]Debajyoti Das, Praloy Mondal, “Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering”, RSC Advances, no. 67, pp. 35735-35743, July. 2014. [108]Tsutomu Ohta, Masahiro Shibuta, Hironori Tsunoyama, “Size and Structure Dependence of Electronic States in ThiolateProtected Gold Nanoclusters of Au25(SR)18, Au38(SR)24, and Au144(SR)60”, The Journal of Physical Chemistry C, vol. 117, no. 7, pp. 3674-3679, Feb. 2013. [109]Antonino Mazzaglia, Luigi Monsu Scolaro, Alessio Mezzi, “Supramolecular Colloidal Systems of Gold Nanoparticles/Amphiphilic Cyclodextrin: a FE-SEM and XPS Investigation of Nanostructures Assembled onto Solid Surface”, The Journal of Physical Chemistry C, vol. 113, no. 29, pp. 12772-12777, June. 2009.
|