[ 1 ] 陳培昌,蘿蔔。台灣農家要覽:農作篇(二),貳.蔬菜,第一類.根菜類。增修訂三版247-249。台北:行政院農業委員會,2006。
[ 2 ] 李文汕,蘿蔔。台灣農家要覽(新版)農作篇(二)豐年社編印,2005。
[ 3 ] 李時珍,新訂本草綱目(下)。世一文化事業股份有限公司。台南,2000。
[ 4 ] Banihani, Saleem Ali., Radish (Raphanus sativus) and Diabetes., Nutrients vol. 9,9 1014. 14 Sep. 2017, doi:10.3390/nu9091014.
[ 5 ] Lee SW, Yang KM, Kim JK, et al., Effects of White Radish (Raphanus sativus) Enzyme Extract on Hepatotoxicity, Toxicol Res. 2012;28(3):165-172. doi:10.5487/TR.2012.28.3.165.
[ 6 ] Curtis I.S., The noble radish: past, present and future.,Trends Plant. Sci. (2003);8:305–307. doi: 10.1016/S1360-1385(03)00127-4.
[ 7 ] 林鴻鍇,老菜脯現代化發酵生產及其功能性研究,南台科技大學生物科技系研究所碩士論文,2011。[ 8 ] Dai, Y., et al, The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical, Carbohydrate Polymers, Volume 178, 2017, Pages 34-40.
[ 9 ] Ivanov, V. E., et al., Formation of long-lived reactive species of blood serum proteins induced by low-intensity irradiation of helium-neon laser and their involvement in the generation of reactive oxygen species, Journal of Photochemistry and Photobiology B: Biology, Volume 176, 2017, Pages 36-43.
[ 10 ] Zhao, J., et al., Assessment of reactive oxygen species generated by electronic
cigarettes using acellular and cellular approaches, Journal of Hazardous Materials, Volume 344, 2018, Pages 549-557.
[ 11 ] Stefan I. Liochev, Reactive oxygen species and the free radical theory of aging, Free Radical Biology and Medicine, Volume 60, 2013, Pages 1-4.
[ 12 ] Sarangarajan, R., et al., Antioxidants: Friend or foe?, Asian Pacific Journal of
Tropical Medicine, Volume 10, Issue 12, 2017, Pages 1111-1116.
[ 13 ] Stevanato, R., et al., Photoprotective characteristics of natural antioxidant
polyphenols, Regulatory Toxicology and Pharmacology, Volume 69, Issue 1, 2014, Pages 71-77.
[ 14 ] Angela Giovana Batista, et al, Polyphenols, antioxidants, and antimutagenic
effects of Copaifera langsdorffi fruit, Food Chemistry, Volume 197, Part B, 2016, Pages 1153-1159.
[ 15 ] A. Solari-Godino, et al., Anchovy mince (Engraulis ringens) enriched with polyphenol-rich grape pomace dietary fibre: In vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties, Food Research International, Volume 102, 2017, Pages 639-646.
[ 16 ] Stevanato, R., et al., Photoprotective characteristics of natural antioxidant
polyphenols, Regulatory Toxicology and Pharmacology, Volume 69, Issue 1,
2014, Pages 71-77.
[ 17 ] Kevin D. Croft, Dietary polyphenols: Antioxidants or not?, Archives of
Biochemistry and Biophysics, Volume 595, 2016, Pages 120-124.
[ 18 ] Khushwant S. Bhullar, H.P Vasantha Rupasinghe, Antioxidant and cytoprotective properties of partridgeberry polyphenols, Food Chemistry, Volume 168, 2015, Pages 595-605.
[ 19 ] Zhang, C., et al. Antioxidant capacity and major polyphenol composition of teas
as affected by geographical location, plantation elevation and leaf grade, Food
Chemistry, Volume 244, 2018, Pages 109-119.
[ 20 ] Elias Atala, et al., Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation, Food Chemistry, Volume 234, 2017, Pages 479-485.
[ 21 ] Lesjak, M., et al, Antioxidant and anti-inflammatory activities of quercetin and its derivatives, Journal of Functional Foods, Volume 40, 2018, Pages 68-75.
[ 22 ] Sergio M. Borghi, S. M., et al., The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice, The Journal of Nutritional Biochemistry, Volume 53, 2018, Pages 81-95.
[ 23 ] Veith, C., et al., The disturbed redox-balance in pulmonary fibrosis is modulate by the plant flavonoid quercetin, Toxicology and Applied Pharmacology, Volume 336,2017, Pages 40-48.
[ 24 ] Miltonprabu, S., et al., Hepatoprotective effect of quercetin: From chemistry to medicine, Food and Chemical Toxicology, Volume 108, Part B, 2017, Pages 365-374.
[ 25 ] Mau, J. L., et al., Antioxidant properties of several specialty mushrooms, Food Research International, Volume 35, Issue 6, 2002, Pages 519-526.
[ 26 ] Hazra, B., et al., Antioxidant and free radical scavenging activity of Spondias pinnata, BMC Complement Altern Med, Volume 8, 2008, Page 63.
[ 27 ] Song-Hwan Bae, Hyung-Joo Suh, Antioxidant activities of five different mulberry cultivars in Korea, LWT - Food Science and Technology, Volume 40, Issue 6, 2007, Pages 955-962.
[ 28 ] Kang, Ji-Nam et al., Analysis of Phenotypic Characteristics and Sucrose Metabolism in the Roots of Raphanus sativus L, Frontiers in plant science vol. 12 716782. 21 Oct. 2021, doi:10.3389/fpls.2021.716782.
[ 29 ] Manivannan, Abinaya et al., Deciphering the Nutraceutical Potential of Raphanus sativus-A Comprehensive Overview., Nutrients, vol. 11,2 402. 14 Feb. 2019, doi:10.3390/nu11020402.
[ 30 ] Gutiérrez RM, Perez RL., Raphanus sativus (Radish): their chemistry and biology., ScientificWorldJournal. 2004;4:811-837. Published 2004 Sep 13. doi:10.1100/tsw.2004.131.
[ 31 ] Kumakura, Kei et al. , Nutritional content and health benefits of sun-dried and salt-aged radish (takuan-zuke)., Food chemistry, vol. 231 (2017): 33-41.
[ 32 ] Gao, Lei et al., Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review., Journal of ethnopharmacology, vol. 294 (2022): 115387.
[ 33 ] Sham, Tung-Ting et al., A review of the phytochemistry and pharmacological activities of raphani semen., Evidence-based complementary and alternative medicine : eCAM vol. 2013 (2013): 636194.
[ 34 ] Vhangani, Lusani Norah, and Jessy Van Wyk. “Heated plant extracts as natural inhibitors of enzymatic browning: A case of the Maillard reaction.” Journal of food biochemistry vol. 45,2 (2021): e13611. doi:10.1111/jfbc.13611
[ 35 ] Adrian, J. “Nutritional and physiological consequences of the Maillard reaction.” World review of nutrition and dietetics vol. 19 (1974): 71-122. doi:10.1159/000394766