|
[1]Wuebbles, D. J., & Jain, A. K., (2001), Concerns about climate change and the role of fossil fuel use., Fuel processing technology, 71(1-3), 99-119. [2]Ritchie, H., Roser, M., & Rosado, P., (2020), CO₂ and greenhouse gas emissions., Our world in data. [3]Ehhalt,D., et al.,( 2001) “Atmospheric chemistry and greenhouse gases,” . [4]Masson-Delmotte, V., et al., (2021), Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2. [5]Lindsey, R.; Dahlman, L., (2020), Climate change: Global temperature. Climate. gov, 16. [6]Ebi, Kristie L., et al., (2021), Extreme weather and climate change: population health and health system implications. ,Annual review of public health, 42(1), 293-315. [7]D'Amato, G., & Akdis, C., (2020), Global warming, climate change, air pollution and allergies., Authorea Preprints. [8]聯合國氣候變化綱要公約。 [9]氣候變遷因應法。 [10]環署氣籌字第1129100952號 公告:事業應盤查登錄及查驗溫室氣體排放量之排放源。 [11]溫室氣體排放量盤查登錄管理辦法。 [12]H. Ohta, (2021), “Japan’s Policy on Net Carbon Neutrality by 2050,” East Asian Policy., 13(01), 19-32. [13]J. Deutch, (2020), “Is net zero carbon 2050 possible?,” Joule., 4(11), 2237-2240. [14]H. Oh I. , Hong, and I. Oh,( 2021), “South Korea’s 2050 carbon neutrality policy.,” East Asian Policy, 13(01), 33-46. [15]P. Plötz et al, (2021), “Net-Zero-Carbon Transport in Europe until 2050—Targets, Technologies and Policies for a Long-Term EU Strategy.,” Karlsruhe: Fraunhofer Institute for Systems and Innovation Research ISI. Available online: https://www. isi. fraunhofer. de/en. html (accessed on 25 July 2021). [16]國家發展委員會,(2022),臺灣2050淨零排放路徑及策略總說明 [PDF file],NDC,Retrieved from https://www.ndc.gov.tw/。 [17]Munzur, A., Koch, K., & Winter, J., (2021), Geopolitical Implications of the EU’s Carbon Border Adjustment Mechanism. [18]Eicke, Laima, et al., (2021), Pulling up the carbon ladder? Decarbonization, dependence, and third-country risks from the European carbon border adjustment mechanism., Energy Research & Social Science, 80, 102240. [19]Weber, C. L., & Peters, G. P., (2009), Climate change policy and international trade: Policy considerations in the US., Energy Policy, 37(2), 432-440. [20]Larch, M., & Wanner, J., (2017), Carbon tariffs: An analysis of the trade, welfare, and emission effects., Journal of International Economics, 109, 195-213. [21]KARL, Thomas R., et al., (2009), Global climate change impacts in the United States: a state of knowledge report from the US Global Change Research Program., Cambridge University Press. [22]ALLEN, M., et al. , (2018), Special Report: Global Warming of 1.5 C., Intergovernmental Panel on Climate Change (IPCC). [23]SUTTON, Rowan T.; DONG, Buwen; GREGORY, Jonathan M. , (2007), Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations., Geophysical research letters, 34(2). [24]WANG, You-Ren, et al. , (2022), Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data., Remote Sensing of Environment, 280, 113181. [25]汪中和,(2015),氣候暖化與台灣的水資源,鑛冶:中國鑛冶工程學會會刊59(2),11-15。 [26]經濟部水利署,(2020),109~110年百年大旱抗旱紀實,初版,台中市。 [27]卓盈旻,盧孟明,(2013),臺灣地區近百年極端乾期變化分析,大氣科學, 41(2), 171-187。 [28]Singh, S., et al., (2006), A review of wind – resource – assessment technology., Journal of Energy Engineering, ASCE, 132, 8-14. [29]Chrobak, P., et al., (2016), Effect of cloudiness on the production of electricity by photovoltaic panels, MATEC Web of Conferences, EDP Sciences, vol.76, No.02010, pp.1-4. [30]Bonkaney, A., et al., (2017), Impacts of cloud cover and dust on the performance of photovoltaic module in Niamey, Journal of Renewable Energy, vol.2017, pp.1-8. [31]台灣電力股份有限公司,(2021),2021永續報告書:友善環境行動者 [PDF file], TPC,Retrieved from https://csr.taipower.com.tw/。 [32]蘇立基,(2020),台電社會責任之研究—以減碳為例,中國文化大學,PhD Thesis。 [33]行政院環境保護署,(2016),溫室氣體盤查登錄審查作業指引20160614 [PDF file],EPA,Retrieved from https://ghgregistry.epa.gov.tw。 [34]鄭睿合,鄭翔勻, (2019), 依循我國能源轉型規劃之燃煤發電量變化與碳排放量影響,經濟前瞻,,(181), 51-54.C。 [35]PLANT, Taichung Thermal Power,(2010),影響台電公司火力電廠燃煤汽力機組熱效率因素之研究:以台中電廠為例,台電工程月刊,737,1-11。 [36]台灣電力股份有限公司,(2019),台電環境白皮書 [PDF file],台電環境白皮書及環境政策-措施公告-業務公告-台灣電力股份有限公司,TPC, Retrieved from https://www.taipower.com.tw/tc/page.aspx?mid=1456。 [37]Cherrington, R., et al., (2013), The feed-in tariff in the UK: A case study focus on domestic photovoltaic systems., Renewable Energy, 50, 421-426. [38]Timilsina, G. R., et al., (2012), Solar energy: Markets, economics and policies., Renewable and sustainable energy reviews, 16(1), 449-465. [39]Clark, R., Zucker, N., & Urpelainen, J., (2020), The future of coal-fired power generation in Southeast Asia., Renewable and Sustainable Energy Reviews, 121, 109650. [40]Henning, H. M., & Palzer, A., (2015), What will the energy transformation cost? Pathways for transforming the German energy system by 2050., Fraunhofer Institute for Solar Energy Systems ISE, Freiburg. [41]台灣電力股份有限公司(興達發電廠),(2014),興達發電廠一號機鍋爐及汽機、控制系統與效能提升專案計畫書 [PDF file],第5版, https://carbonoffset.moenv.gov.tw/ApplicationRegistrationView/CaseQuery。 [42]Arent, D. J., et al., (2011), The status and prospects of renewable energy for combating global warming, Energy Economics, 33(4), 584-593. [43]Ellabban, O., Abu-Rub, H., & Blaabjerg, F., (2014), Renewable energy resources: Current status, future prospects and their enabling technology., Renewable and sustainable energy reviews, 39, 748-764. [44]羅時芳,吳周燕,(2017),臺灣生質燃料產業趨勢分析,經濟前瞻,174,112-117。 [45]Zhai, H., Ou, Y., & Rubin, E. S., (2015), Opportunities for decarbonizing existing US coal-fired power plants via CO2 capture, utilization and storage., Environmental science & technology, 49(13), 7571-7579. [46]Nazim Muradov, (2001), Hydrogen via methane decomposition: an application for decarbonization of fossil fuels, International Journal of Hydrogen Energy, Volume 26, Issue 11, Pages 1165-1175, ISSN 0360-3199. [47]HERRAIZ, Laura, et al. , (2020), Sequential combustion in steam methane reformers for hydrogen and power production with CCUS in decarbonized industrial clusters., Frontiers in Energy Research, 8, 180. [48]Figueroa, J. D., et al., (2008), Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program, International Journal of Greenhouse Gas Control, Volume 2(1), 9-20. [49]Rubin, E. S., et al., (2012), The outlook for improved carbon capture technology., Progress in energy and combustion science, 38(5), 630-671. [50]Singh, U., Rao, A. B., & Chandel, M. K., (2017), Economic implications of CO2 capture from the existing as well as proposed coal-fired power plants in india under various policy scenarios., Energy Procedia, 114, 7638-7650. [51]Parvareh, F. et al., (2014), Integration of solar energy in coal-fired power plants retrofitted with carbon capture: a review., Renewable and Sustainable Energy Reviews, 38, 1029-1044. [52]Mann, M. K., & Spath, P. L., (1999, August), The Net CO2 emissions and energy balances of biomass and coal-fired power systems., In Proceedings of the fourth biomass conference of the Americas, Oakland, California, 379-85. [53]Cherubini, F., et al., (2011), CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming., Gcb Bioenergy, 3(5), 413-426.
|