|
[1]Ryabtsev, S. V., Shaposhnick, A. V., Lukin, A. N., & Domashevskaya, E. P. (1999). Application of semiconductor gas sensors for medical diagnostics. Sensors and Actuators B: Chemical, 59(1), 26-29. [2]Tajika, H., Nishihara, K., Nomura, K., Ohtsuchi, T., & Touji, M. (2000). Three-axis earthquake sensor using direct bonding of LiNbO3 crystals. Sensors and Actuators A: Physical, 82(1–3), 89-96. [3]Qureshi, I., Qazi, M. A., & Memon, S. (2009). A versatile calixarene derivative for transportation systems and sensor technology. Sensors and Actuators B: Chemical, 141(1), 45-49. [4]Kumar, R. R., Murugesan, T., Dash, A., Hsu, C.-H., Gupta, S., Manikandan, A., Anbalagan, A. K., Lee, C.-H., Tai, N.-H., Chueh, Y.-L., & Lin, H.-N. (2021). Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study. Applied Surface Science, 536, 147933. [5]Abdul Rashid, I., Saif, I., Usama, M., Umer, M., Javid, A., Ahmad Rehan, Z., & Zubair, U. (2022). Highly resilient and responsive fabric strain sensors: Their effective integration into textiles and wireless communication for wearable applications. Sensors and Actuators A: Physical, 346, 113836. [6]Phan, D.-T., & Chung, G.-S. (2012). Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sensors and Actuators B: Chemical, 161(1), 341-348. [7]Marcu, A, & Viespe, C. (2015). Laser-grown ZnO nanowires for room-temperature SAW-sensor applications. Sensors and Actuators B: Chemical, 208, 1-6. [8]Atashbar, M. Z., Sadek, A. Z., Wlodarski, W., Sriram, S., Bhaskaran, M., Cheng, C. J., Kaner, R. B., & Kalantar-zadeh, K. (2009). Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64° YX LiNbO3 for H2 sensing. Sensors and Actuators B: Chemical, 138(1), 85-89. [9]Nomura, T., Saitoh, A., & Horikoshi, Y. (2001). Measurement of acoustic properties of liquid using liquid flow SH-SAW sensor system. Sensors and Actuators B: Chemical, 76(1-3), 69-73. [10]Ramshani, Z., Reddy, A. S. G., Narakathu, B. B., Wabeke, J. T., Obare, S. O., & Atashbar, M. Z. (2015). SH-SAW sensor based microfluidic system for the detection of heavy metal compounds in liquid environments. Sensors and Actuators B: Chemical, 217, 72-77. [11]So, H., & Senesky, D. G. (2016). ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors. Applied Surface Science, 387, 280-284. [12]Phan, D.-T., & Chung, G.-S. (2012). Fabrication and characteristics of a surface acoustic wave UV sensor based on ZnO thin films grown on a polycrystalline 3C–SiC buffer layer. Current Applied Physics, 12(2), 521-524. [13]Rana, L., Gupta, R., Tomar, M., & Gupta, V. (2017). ZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensor. Sensors and Actuators B: Chemical, 252, 840-845. [14]Ippolito, S. J., Kandasamy, S., Kalantar-zadeh, K., Wlodarski, W., Galatsis, K., Kiriakidis, G., Katsarakis, N., & Suchea, M. (2005). Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing. Sensors and Actuators B: Chemical, 111-112, 207-212. [15]Rodriguez-Madrid, J. G., Iriarte, G. F., Williams, O. A., & Calle, F. (2013). High precision pressure sensors based on SAW devices in the GHz range. Sensors and Actuators A: Physical, 189, 364-369. [16]Wang, W., Lee, K., Woo, I., Park, I., & Yang, S. (2007). Optimal design on SAW sensor for wireless pressure measurement based on reflective delay line. Sensors and Actuators A: Physical, 139(1-2), 2-6. [17]Müller, A., Konstantinidis, G., Buiculescu, V., Dinescu, A., Stavrinidis, A., Stefanescu, A., Stavrinidis, G., Giangu, I., Cismaru, A., & Modoveanu, A. (2014). GaN/Si based single SAW resonator temperature sensor operating in the GHz frequency range. Sensors and Actuators A: Physical, 209, 115-123. [18]Kang, A., Zhang, C., Ji, X., Han, T., Li, R., & Li, X. (2013). SAW-RFID enabled temperature sensor. Sensors and Actuators A: Physical, 201, 105-113. [19]Li, X., Tan, Q., Qin, L., Zhang, L., Liang, X., & Yan, X. (2022). A high-sensitivity MoS2/graphene oxide nanocomposite humidity sensor based on surface acoustic wave. Sensors and Actuators A: Physical, 341, 113573. [20]Le, X, Wang, X., Pang, J., Liu, Y., Fang, B., Xu, Z., Gao, C., Xu, Y., & Xie, J. (2018). A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure. Sensors and Actuators B: Chemical, 255(Part 3), 2454-2461. [21]Jiang, Y., Tan, C. Y., Tan, S. Y., Wong, M. S. F., Chen, Y. F., Zhang, L., Yao, K., Gan, S. K. E., Verma, C., & Tan, Y. J. (2015). SAW sensor for Influenza A virus detection enabled with efficient surface functionalization. Sensors and Actuators B: Chemical, 209, 78-84. [22]Kidakova, A., Boroznjak, R., Reut, J., Öpik, A., Saarma, M., & Syritski, V. (2020). Molecularly imprinted polymer-based SAW sensor for label-free detection of cerebral dopamine neurotrophic factor protein. Sensors and Actuators B: Chemical, 308, 127708. [23]Sauze, L. C., Vaxelaire, N., Templier, R., Rouchon, D., Pierre, F., Guedj, C., Remiens, D., Rodriguez, G., Bousquet, M., & Dupont, F. (2023). Homo-epitaxial growth of LiNbO3 thin films by Pulsed Laser deposition. Journal of Crystal Growth, 601, 126950. [24]Castillo-Torres, J. (2013). Optical absorption edge analysis for zinc-doped lithium niobate. Optics Communications, 290, 107-109. [25]Han, H., Cai, L., & Hu, H. (2015). Optical and structural properties of single-crystal lithium niobate thin film. Optical Materials, 42, 47-51. [26]Shi, C., Yuan, J., Luo, X., Shi, S., Lu, S., Yuan, P., Xu, W., Chen, Z., & Yu, H. (2020). Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide. Optics Communications, 461, 125222. [27]Gruber, M., Leitner, A., Kiener, D., Supancic, P., & Bermejo, R. (2022). Effect of crystal orientation on the hardness and strength of piezoelectric LiNbO3 substrates for microelectronic applications. Materials & Design, 213, 110306. [28]Sauze, L. C., Vaxelaire, N., Templier, R., Rouchon, D., Pierre, F., Guedj, C., Remiens, D., Rodriguez, G., Bousquet, M., & Dupont, F. (2023). Homo-epitaxial growth of LiNbO3 thin films by Pulsed Laser deposition. Journal of Crystal Growth, 601, 126950. [29]Wang, W., & He, S. (2009). Theoretical analysis on response mechanism of polymer-coated chemical sensor based Love wave in viscoelastic media. Sensors and Actuators B: Chemical, 138(2), 432-440. [30]Kalantar-Zadeh, K., Wlodarski, W., Chen, Y. Y., Fry, B. N., & Galatsis, K. (2003). Novel Love mode surface acoustic wave based immunosensors. Sensors and Actuators B: Chemical, 91(1-3), 143-147. [31]El Hakiki, M., Elmazria, O., Assouar, M. B., Mortet, V., Le Brizoual, L., Vanecek, M., & Alnot, P. (2005). ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient. Diamond and Related Materials, 14(3-7), 1175-1178. [32]Wingqvist, G., Bjurström, J., Liljeholm, L., Yantchev, V., & Katardjiev, I. (2007). Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sensors and Actuators B: Chemical, 123(1), 466-473. [33]M.C. Horrillo, M.J. Fernández, J.L. Fontecha, I. Sayago, M. García, M. Aleixandre, J. Gutiérrez, I. Gràcia, C. Cané. Optimization of SAW sensors with a structure ZnO-SiO2-Si to detect volatile organic compounds. Sensors and Actuators B: Chemical, Volume 118, Issues 1-2, 25 October 2006, Pages 356-361. [34]Wang Wen, He Shitang, Li Shunzhou, Liu Minghua, Pan Yong. Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator. Sensors and Actuators B: Chemical, Volume 125, Issue 2, 8 August 2007, Pages 422-427. [35]Badis Rahal, Boubekeur Boudine, Ahmed Redha Khantoul, Miloud Sebais, Ouahiba Halimi. Colloidal synthesis of nanostructured pure ZnO and Cd doped ZnO thin films and their characterization. Optik, Volume 127, Issue 17, September 2016, Pages 6943-6951. [36]Felcy Jyothi Serrao, K.M. Sandeep, S. Raghavendra, K. Kumara, Navin N Bappalige, S.M. Dharmaprakash. Influence of 8 MeV Electron Irradiation on the Properties of ZnO Nanocrystalline Thin Films for Optoelectronic Devices in the High Radiation Environment. Thin Solid Films, Volume 756, 31 August 2022, 139353. [37]Ping-Che Lee, Yu-Liang Hsiao, Jit Dutta, Ruey-Chi Wang, Shih-Wen Tseng, Chuan-Pu Liu. Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors. Nano Energy, Volume 82, April 2021, 105702. [38]Xinyu Yan, Zexiang Chen, Yan Wang, Hai Li, Jijun Zhang. In-situ growth of ZnO nanoplates on graphene for the application of high rate flexible quasi-solid-state Ni-Zn secondary battery. Journal of Power Sources, Volume 407, 15 December 2018, Pages 137-146. [39]V. Bhasker Raj, Harpreet Singh, A.T. Nimal, Monika Tomar, M.U. Sharma, Vinay Gupta. Origin and role of elasticity in the enhanced DMMP detection by ZnO/SAW sensor. Sensors and Actuators B: Chemical, Volume 207, Part A, February 2015, Pages 375-382. [40]Hui Wang, Yang Zhao, Chao Wu, Xin Dong, Baolin Zhang, Guoguang Wu, Yan Ma, Guotong Du. Ultraviolet electroluminescence from n-ZnO/NiO/p-GaN light-emitting diode fabricated by MOCVD. Journal of Luminescence, Volume 158, February 2015, Pages 6-10. [41]Amarjyoti Kalita. Crystallite size controlled doping of transition metals (Co, Cu) in ZnO nanocrystals to investigate microstructural, optical, magnetic, and photocatalytic properties. Current Applied Physics, Volume 52, August 2023, Pages 65-79. [42]S.H. Basri, W.H. Abd Majid, N.A. Talik, M.A. Mohd Sarjidan. Tailoring electronics structure, electrical and magnetic properties of synthesized transition metal (Ni)-doped ZnO thin film. Journal of Alloys and Compounds, Volume 769, 15 November 2018, Pages 640-648. [43]H. Gómez, M. de la L. Olvera. Ga-doped ZnO thin films: Effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties. Materials Science and Engineering: B, Volume 134, Issue 1, 25 September 2006, Pages 20-26. [44]Marzieh Shirazi, Reza Sabet Dariani, Mohammad Reza Toroghinejad. Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO. Journal of Alloys and Compounds, Volume 692, 25 January 2017, Pages 492-502. [45]B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani. Structure-dependent anisotropy of the photoinduced optical nonlinearity in calcium doped ZnO nanorods grown by low-cost hydrothermal method for photonic device applications. Journal of Alloys and Compounds, Volume 658, 2016, Pages 435-439. [46]Bing Wang, Lidan Tang, Jingang Qi, Huiling Du, Zhenbin Zhang. Synthesis and characteristics of Li-doped ZnO powders for p-type ZnO. Journal of Alloys and Compounds, Volume 503, Issue 2, 6 August 2010, Pages 436-438. [47]Chuanhui Xia, Feng Wang, Chunlian Hu. Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO. Journal of Alloys and Compounds, Volume 589, 15 March 2014, Pages 604-608. [48]J. Karamdel, C.F. Dee, K.G. Saw, B. Varghese, C.H. Sow, I. Ahmad, B.Y. Majlis. Synthesis and characterization of well-aligned catalyst-free phosphorus-doped ZnO nanowires. Journal of Alloys and Compounds, Volume 512, Issue 1, 2012, Pages 68-72. DOI: 10.1016/j.jallcom.2011.09.018 [49]Seval Aksoy, Yasemin Caglar. Synthesis of Mn doped ZnO nanopowders by MW-HTS and its structural, morphological and optical characteristics. Journal of Alloys and Compounds, Volume 781, 15 April 2019, Pages 929-935. [50]Haixia Chen, Jijun Ding, Feng Shi, Yingfeng Li, Wenge Guo. Optical properties of Ti-doped ZnO films synthesized via magnetron sputtering. Journal of Alloys and Compounds, Volume 534, 5 September 2012, Pages 59-63. [51]Rishi Dhawan, Emila Panda. Mg addition in undoped and Al-doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering. Journal of Alloys and Compounds, Volume 788, 5 June 2019, Pages 1037-1047. [52]K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi. Fabrication, modeling and simulation of High sensitivity capacitive humidity sensors based on ZnO nanorods. Sensors and Actuators B: Chemical, Volume 215, 15 January 2015, Pages 197-202, ISSN 0925-4005. [53]Yoonjung Lee, Sohee Kim, Daeyeong Kim, Cheoljae Lee, Hyojin Park, Ju-Hyuck Lee. Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Applied Surface Science, Volume 509, 15 April 2020, 145328. [54]C.M. Fung, J.S. Lloyd, S. Samavat, D. Deganello, K.S. Teng. Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique. Sensors and Actuators B: Chemical, Volume 247, August 2017, Pages 807-813, ISSN 0925-4005. [55]Ajay Kumar, Rahul Prajesh. The potential of acoustic wave devices for gas sensing applications. Sensors and Actuators A: Physical, Volume 339, 1 June 2022, 113498. [56]F. Herrmann, M. Weihnacht, S. Buttgenbach. "Properties of sensors based on shear-horizontal surface acoustic waves in LiTaO/sub 3//SiO/sub 2/ and quartz/SiO/sub 2/ structures." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Volume 48, Issue 1, January 2001. [57]Zeinab Ramshani, Avuthu S.G. Reddy, Binu B. Narakathu, Jared T. Wabeke, Sherine O. Obare, Massood Z. Atashbar. SH-SAW sensor based microfluidic system for the detection of heavy metal compounds in liquid environments. Sensors and Actuators B: Chemical, Volume 217, 1 October 2015, Pages 72-77. [58]Hua-Feng Pang, Yong-Qing Fu, Zhi-Jie Li, Yifan Li, Jin-Yi Ma, Frank Placido, Anthony J. Walton, Xiao-Tao Zu. Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36° Y-cut LiTaO3. Sensors and Actuators A: Physical, Volume 193, 15 April 2013, Pages 87-94. [59]Kalantar Zadeh, K., Trinchi, A., Wlodarski, W., Holland, A. "A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications." Sensors and Actuators A: Physical, Volume 100, Issues 2–3, 1 September 2002, Pages 135-143. [60]Burtin, Arnaud, Hovius, Niels, Turowski, Jens M. "Seismic monitoring of torrential and fluvial processes." Earth Surface Dynamics, Volume 4, Issue 2, 2016, pp. 285-307. [61]Baszun, M., Grzęda, D. "Applications of shear horizontal surface acoustic waves to thin film evaluation." Journal of Materials Processing Technology, Volume 133, Issues 1–2, 1 February 2003, Pages 34-38. [62]Ren-Chuan Chang, Sheng-Yuan Chu, Cheng-Shong Hong, Yu-Ting Chuang. A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures. Thin Solid Films, Volume 498, Issues 1–2, 1 March 2006, Pages 146-151. [63]Gardner, J. W., Varadan, Vijay K. and Awadelkarim, Osama O. (2001) Microsensors, MEMS, and Smart Devices. Wiley. ISBN 9780471861096, Pages 330-334. [64]Q. Wang, Y. Lu, S. Mishin, Y. Oshmyansky, and D. A. Horsley, "Design, Fabrication, and Characterization of Scandium Aluminum Nitride-Based Piezoelectric Micromachined Ultrasonic Transducers," in Journal of Microelectromechanical Systems, vol. 26, no. 5, pp. 1132-1139, [65]Chen, X., & Liu, D. (2009). Temperature stability of ZnO-based Love wave biosensor with SiO2 buffer layer. Sensors and Actuators A: Physical, 156(2), 317-322. [66]C.S.Hartmann, D.T.Bell, R.C.Rosenfeld, 1973, “Impulse model design of acoustic surface wave filter”,IEEE Trans. [67]A. Jaakkola, M. Prunnila, and T. Pensala, "Temperature compensated resonance modes of degenerately n-doped silicon MEMS resonators," in 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, MD, USA, 2012, pp. 1-5. [68]S.I. Boyadjiev, V. Georgieva, R. Yordanov, Z. Raicheva, and I.M. Szilágyi, "Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors," in Applied Surface Science, vol. 387, pp. 1230-1235, 30 November 2016. [69]S.K. Panda and C. Jacob, "Preparation of transparent ZnO thin films and their application in UV sensor devices," in Solid-State Electronics, vol. 73, pp. 44-50, July 2012. [70]M.A. Borysiewicz, (2019) "ZnO as a Functional Material, a Review," in Crystals, vol.9, no.10, p.505. [71]R. Sharma, N. Saxena, N. Pandey, A. Dawar, S. Ojha, V. Chawla, R. Laishram, R. Krishna, O.P. Sinha,(2022)"Mg-doped tailoring of Zinc oxide for UV-photodetection application," in Optical Materials, vol.125, p.112056. [72]F.M. Tezel, U. Veli, İ.A. Kariper, (2022)"Synthesis of MgO thin films: How heat treatment affects their structural, electro-optical, and surface properties," in Materials Today Communications, vol. 33, p. 104962. [73]B.H.Kong, W.S.Han, Y.Y.Kim, H.K.Cho, J.H Kim,(2010) "Heterojunction light emitting diodes fabricated with different n-layer oxide structures on p-GaN layers by magnetron sputtering," in Applied Surface Science, vol. 256, issue 16, pp. 4972-4976. [74]Jr-Shiang Shiau, S. Brahma, C.-P. Liu, J.-L. Huang (2016), "Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering," in Thin Solid Films, vol. 620, pp. 170-174. [75]J. Hornak (2021), "Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review," in Int. J. Mol. Sci., vol. 22, no. 23, p. 12752. [76]Seung Jo Yoo, Ji-Hyun Lee, Chang-Yeon Kim, Chang Hoi Kim, Jae Won Shin, Hong Seung Kim, Jin-Gyu Kim (2015), "Direct observation of the crystal structure changes in the MgxZn1 − xO alloy system," in Thin Solid Films, vol. 588, pp. 50-55. [77]Zayani Jaafar Othman and Adel Matoussi. "Morphological and optical studies of zinc oxide doped MgO." Journal of Alloys and Compounds, Volume 671, 25 June 2016, Pages 366-371. [78]Hak Ki Yu. "Secondary electron emission properties of Zn-doped MgO thin films grown via electron-beam evaporation." Thin Solid Films, Volume 653, 1 May 2018, Pages 57-61. [79]Tomoaki Terasako and Sho Shirakata. "Photoluminescence from highly oriented MgxZn1−xO films grown by chemical spray pyrolysis." Thin Solid Films, Volumes 420–421, 2 December 2002, Pages 13-18. [80]Md Jawaid Alam, Punam Murkute, Sushama, Hemant Ghadi, Sritoma Paul, Shubham Mondal, and Subhananda Chakrabarti. "Improving optical properties and controlling defect-bound states in ZnMgO thin films through ultraviolet–ozone annealing." Thin Solid Films, Volume 708, 31 August 2020, 138112. [81]A. Janotti and C. G. Van de Walle. "Fundamentals of zinc oxide as a semiconductor." Reports on Progress in Physics, vol. 72, no. 12, p. 126501, 2009. [82]T. Yao and S.-K. Hong. Oxide and nitride semiconductors: Processing, properties, and applications. Springer Science & Business Media, 2009. [83]V. Etacheri, R. Roshan, and V. Kumar, "Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis," ACS Appl Mater Interfaces, vol. 4, no. 5, pp. 2717-25, May 2012. [84]W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, and T. Venkatesan (2003), "Compositionally-tuned epitaxial cubic MgxZn1−xO on Si(100) for deep ultraviolet photodetectors," in Appl. Phys. Lett., vol.82, no.20. [85]Md. Moazzem Hossain (2019), "First-principles study on the structural, elastic, electronic and optical properties of LiNbO3," in Heliyon, vol. 5, no. 4, e01436. [86]Lokesh Rana, Reema Gupta, Monika Tomar, and Vinay Gupta (2018), "Highly sensitive Love wave acoustic biosensor for uric acid," in Sensors and Actuators B: Chemical, vol. 261, pp. 169-177. [87]S.S.A. Gillani, Riaz Ahmad, I. Zeba, Islah-u-din, M. Shakil, Muhammad Rizwan, Muhammad Rafique, M. Sarfraz, S.S. Hassan (2020), "Effect of external pressure on the structural stability, electronic structure, band gap engineering and optical properties of LiNbO3: An ab-initio calculation," in Materials Today Communications, vol. 23, 100919. [88]J.L. Robins (1988), "Thin film nucleation and growth kinetics," in Applied Surface Science, Volumes 33-34, pp. 379-394. [89]A. F. Kohan, G. Ceder, D. Morgan, Chris G. Van de Walle (2000), "First-principles study of native point defects in ZnO," in Physical Review B, Volume 61, Number 22. [90]Abhinav Mahapatra, R.S. Ajimsha, Pankaj Misra (2022), "Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators," in Journal of Alloys and Compounds, Volume 913, 25 August 2022, 165277. [91]Ahmad Umar, Rajesh Kumar, Girish Kumar, H. Algarni, S.H. Kim (2015), "Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles," in Journal of Alloys and Compounds, Volume 648, 5 November 2015, Pages 46-52. [92]Weiliang Feng, Baocai Wang, Pei Huang, Xiaodong Wang, Juan Yu, Cunwen Wang (2016), "Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals," in Materials Science in Semiconductor Processing, Volume 41, January 2016, Pages 462-469. [93]R. Yukawa, S. Yamamoto, K. Ozawa, M. Emori, M. Ogawa, Sh. Yamamoto, K. Fujikawa, R. Hobara, S. Kitagawa, H. Daimon, H. Sakama, and I. Matsuda (2014), "Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy," in Applied Physics Letters, Volume 105, Issue 15, 13 October 2014. [94]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang (2007), "ZnO Nanowire UV Photodetectors with High Internal Gain," in Nano Letters, Vol. 7, No. 4, 2007, pp. 1003-1009. [95]Wiesław Jakubik (2012), "Theory of SAW gas sensor based on bi-layer conductivity changes," in Procedia Engineering, Volume 47, 1287-1290, [96]D.S. Ballantine, Jr., S.J. Martin, A.J. Ricco, E.T. Zellers, and T.W. Burnett. "Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications." 1996. [97]V. Bhasker Raj, A.T. Nimal, Yashoda Parmar, M.U. Sharma, and Vinay Gupta. "Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor." Sensors and Actuators B: Chemical, Volumes 166–167, 20 May 2012, Pages 576-585. [98]W. Li, Y.J. Guo, Q.B. Tang, X.T. Zu, J.Y. Ma, L. Wang, K. Tao, H. Torun, and Y.Q. Fu. "Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices." Surface and Coatings Technology, Volume 363, 15 April 2019, Pages 419-425. [99]Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas and R. P. Tandon, "ZnO based surface acoustic wave ultraviolet photo sensor" Journal of Electroceramics volume 22, pages 198–202 (2009) [100]W. Lia, Y.J. Guoa, Q.B. Tang, X.T. Zu, J.Y. Ma, L. Wang, K. Tao, H. Torun, Y.Q. Fu, "Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices" Surface and Coatings Technology Volμme 363, 15 April 2019, Pages 419-425 [101]Duy-Thach Phan, Gwiy-Sang Chung "Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode" Current Applied Physics Volume 12, Issue 1, January 2012, Pages 210-213 [102]Ching-Liang Wei, Ying-Chung Chen, Chien-Chuan Cheng, Kuo-Sheng Kao, Da-Long Cheng, Po-Shu Cheng, "Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator" Thin Solid Films Volume 518, Issue 11, 31 March 2010, Pages 3059-3062 [103]Peng Zhou, Changsong Chen, Xiang Wang, Baofa Hu, and Haisheng San. "2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing." Sensors and Actuators A: Physical, Volume 271, 1 March 2018, Pages 389-397. [104]Parmanand Sharma, "Highly Sensitive Ultraviolet Detector Based on ZnO/LiNbO3 Hybrid Surface Acoustic Wave Filter" October 2003 Applied Physics Letters 83(17) [105]Y J Guo, C Zhao, X S Zhou, Y Li, X T Zu, D Gibson and Y Q Fu,"Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices" Smart Materials and Structures, Volμme 24, Nμmber 12 [106]Hua-Feng Pang, Yong-Qing Fu, Zhi-Jie Li, Yifan Li, Jin-Yi Ma, Frank Placido, Anthony J. Walton, Xiao-Tao Zu, "Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36° Y-cut LiTaO3" Sensors and Actuators A: Physical Volume 193, 15 April 2013, Pages 87-94 [107]Mujdat Caglar, Yasemin Caglar, and Saliha Ilican. "Investigation of the effect of Mg doping for improvements of optical and electrical properties." Physica B: Condensed Matter, Volume 485, 15 March 2016, Pages 6-13.
|