|
[1] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, Journal of membrane science 281(1-2) (2006) 70-87. [2] A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation, Journal of membrane science 343(1-2) (2009) 42-52. [3] I.L. Alsvik, M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods, Polymers 5(1) (2013) 303-327. [4] S. Zou, M. Qin, Z. He, Tackle reverse solute flux in forward osmosis towards sustainable water recovery: reduction and perspectives, Water research 149 (2019) 362-374. [5] C. Klaysom, T.Y. Cath, T. Depuydt, I.F. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chemical society reviews 42(16) (2013) 6959-6989. [6] G. Blandin, A.R. Verliefde, P. Le-Clech, Pressure enhanced fouling and adapted anti-fouling strategy in pressure assisted osmosis (PAO), Journal of Membrane Science 493 (2015) 557-567. [7] C. Suh, S. Lee, Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution, Journal of membrane science 427 (2013) 365-374. [8] A.H. Hawari, N. Kamal, A. Altaee, Combined influence of temperature and flow rate of feeds on the performance of forward osmosis, Desalination 398 (2016) 98-105. [9] D.H. Jung, J. Lee, Y.G. Lee, M. Park, S. Lee, D.R. Yang, J.H. Kim, Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions, Desalination 277(1-3) (2011) 83-91. [10] W. Hough, Forward-osmosis solvent extraction, Google Patents, 1973. [11] J. Kessler, C. Moody, Drinking water from sea water by forward osmosis, Desalination 18(3) (1976) 297-306. [12] J.E. Miller, L.R. Evans, Forward osmosis: a new approach to water purification and desalination, Sandia National Laboratories, 2006. [13] L. Chekli, S. Phuntsho, H.K. Shon, S. Vigneswaran, J. Kandasamy, A. Chanan, A review of draw solutes in forward osmosis process and their use in modern applications, Desalination and Water Treatment 43(1-3) (2012) 167-184. [14] N.M. Mazlan, D. Peshev, A.G. Livingston, Energy consumption for desalination—A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes, Desalination 377 (2016) 138-151. [15] R.V. Linares, Z. Li, S. Sarp, S.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse, Water research 66 (2014) 122-139. [16] T.Y. Cath, D. Adams, A.E. Childress, Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater, Journal of Membrane Science 257(1-2) (2005) 111-119. [17] J.L. Cartinella, T.Y. Cath, M.T. Flynn, G.C. Miller, K.W. Hunter, A.E. Childress, Removal of natural steroid hormones from wastewater using membrane contactor processes, Environmental science & technology 40(23) (2006) 7381-7386. [18] 陳憓琳, 製備GO修飾TFC-PA膜以提升對PPCPs的去除率及抗氯性能, (2018). [19] J.-J. Qin, K.A. Kekre, M.H. Oo, G. Tao, C.L. Lay, C.H. Lew, E.R. Cornelissen, C.J. Ruiken, Preliminary study of osmotic membrane bioreactor: effects of draw solution on water flux and air scouring on fouling, Water science and technology 62(6) (2010) 1353-1360. [20] D.L. Shaffer, J.R. Werber, H. Jaramillo, S. Lin, M. Elimelech, Forward osmosis: where are we now?, Desalination 356 (2015) 271-284. [21] L. Chekli, S. Phuntsho, J.E. Kim, J. Kim, J.Y. Choi, J.-S. Choi, S. Kim, J.H. Kim, S. Hong, J. Sohn, A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects, Journal of Membrane Science 497 (2016) 430-449. [22] W. Suwaileh, N. Pathak, H. Shon, N. Hilal, Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook, Desalination 485 (2020) 114455. [23] A.J. Ansari, F.I. Hai, W.E. Price, J.E. Drewes, L.D. Nghiem, Forward osmosis as a platform for resource recovery from municipal wastewater-A critical assessment of the literature, Journal of membrane science 529 (2017) 195-206. [24] Y. Sun, J. Tian, Z. Zhao, W. Shi, D. Liu, F. Cui, Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between direct FO and OMBR, Water research 104 (2016) 330-339. [25] J. Zhao, Y. Li, S. Pan, Q. Tu, H. Zhu, Performance of a forward osmotic membrane bioreactor for anaerobic digestion of waste sludge with increasing solid concentration, Journal of environmental management 246 (2019) 239-246. [26] A. Alturki, J. McDonald, S.J. Khan, F.I. Hai, W.E. Price, L.D. Nghiem, Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics, Bioresource technology 113 (2012) 201-206. [27] L. Zohrabian, N.P. Hankins, R.W. Field, Hybrid forward osmosis-membrane distillation system: Demonstration of technical feasibility, Journal of Water Process Engineering 33 (2020) 101042. [28] T. Husnain, Y. Liu, R. Riffat, B. Mi, Integration of forward osmosis and membrane distillation for sustainable wastewater reuse, Separation and Purification Technology 156 (2015) 424-431. [29] M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, A forward osmosis–membrane distillation hybrid process for direct sewer mining: system performance and limitations, Environmental science & technology 47(23) (2013) 13486-13493. [30] G. Rassoul, A.F. Al–Alawy, W.N. Khudair, Reduction of concentrating poisonous metallic radicals from industrial wastewater by forward and reverse osmosis, Journal of Engineering 18(7) (2012) 784-798. [31] B. Jiao, A. Cassano, E. Drioli, Recent advances on membrane processes for the concentration of fruit juices: a review, Journal of food engineering 63(3) (2004) 303-324. [32] K. Popper, W. Camirand, F. Nury, W. Stanley, Dialyzer concentrates beverages, Food Eng 38(4) (1966) 102-104. [33] V. Sant’Anna, L.D.F. Marczak, I.C. Tessaro, Membrane concentration of liquid foods by forward osmosis: process and quality view, Journal of Food Engineering 111(3) (2012) 483-489. [34] Q. Ge, M. Ling, T.-S. Chung, Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future, Journal of membrane science 442 (2013) 225-237. [35] G. Blandin, F. Ferrari, G. Lesage, P. Le-Clech, M. Héran, X. Martinez-Lladó, Forward Osmosis as Concentration Process: Review of Opportunities and Challenges, Membranes 10(10) (2020) 284. [36] Q. Yang, K.Y. Wang, T.-S. Chung, A novel dual-layer forward osmosis membrane for protein enrichment and concentration, Separation and Purification Technology 69(3) (2009) 269-274. [37] K.Y. Wang, M.M. Teoh, A. Nugroho, T.-S. Chung, Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions, Chemical Engineering Science 66(11) (2011) 2421-2430. [38] M.M. Ling, T.-S. Chung, Novel dual-stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes, Journal of Membrane Science 372(1-2) (2011) 201-209. [39] W.L. Ang, A.W. Mohammad, D. Johnson, N. Hilal, Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade, Journal of Water Process Engineering 31 (2019) 100886. [40] Y.-N. Wang, K. Goh, X. Li, L. Setiawan, R. Wang, Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects, Desalination 434 (2018) 81-99. [41] S. Zou, Z. He, Electrodialysis recovery of reverse-fluxed fertilizer draw solute during forward osmosis water treatment, Chemical Engineering Journal 330 (2017) 550-558. [42] T.N. Bitaw, K. Park, D.R. Yang, Optimization on a new hybrid Forward osmosis-Electrodialysis-Reverse osmosis seawater desalination process, Desalination 398 (2016) 265-281. [43] H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, C.P. Saint, M. Ginic-Markovic, Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine-induced graphene oxide for biofouling mitigation, Desalination 385 (2016) 126-137. [44] W.A. Phillip, J.S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environmental science & technology 44(13) (2010) 5170-5176. [45] D.J. Johnson, W.A. Suwaileh, A.W. Mohammed, N. Hilal, Osmotic's potential: An overview of draw solutes for forward osmosis, Desalination 434 (2018) 100-120. [46] X. Wang, V.W. Chang, C.Y. Tang, Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future, Journal of membrane science 504 (2016) 113-132. [47] B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents, Journal of membrane science 348(1-2) (2010) 337-345. [48] J. Xu, P. Li, M. Jiao, B. Shan, C. Gao, Effect of molecular configuration of additives on the membrane structure and water transport performance for forward osmosis, ACS Sustainable Chemistry & Engineering 4(8) (2016) 4433-4441. [49] J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, Journal of membrane science 284(1-2) (2006) 237-247. [50] K. Lee, R. Baker, H. Lonsdale, Membranes for power generation by pressure-retarded osmosis, Journal of membrane science 8(2) (1981) 141-171. [51] S. Lee, C. Boo, M. Elimelech, S. Hong, Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO), Journal of membrane science 365(1-2) (2010) 34-39. [52] A. Tiraferri, N.Y. Yip, A.P. Straub, S.R.-V. Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, Journal of membrane science 444 (2013) 523-538. [53] X. Zhang, Q. Li, J. Wang, J. Li, C. Zhao, D. Hou, Effects of feed solution pH and draw solution concentration on the performance of phenolic compounds removal in forward osmosis process, Journal of environmental chemical engineering 5(3) (2017) 2508-2514. [54] P. Zhao, B. Gao, Q. Yue, S. Liu, H.K. Shon, Effect of high salinity on the performance of forward osmosis: Water flux, membrane scaling and removal efficiency, Desalination 378 (2016) 67-73. [55] N. Akther, A. Sodiq, A. Giwa, S. Daer, H. Arafat, S. Hasan, Recent advancements in forward osmosis desalination: A review, Chemical Engineering Journal 281 (2015) 502-522. [56] J. Yaeli, Method and apparatus for processing liquid solutions of suspensions particularly useful in the desalination of saline water, Google Patents, 1992. [57] H. Ryu, K. Kim, H. Cho, E. Park, Y.K. Chang, J.-I. Han, Nutrient-driven forward osmosis coupled with microalgae cultivation for energy efficient dewatering of microalgae, Algal Research 48 (2020) 101880. [58] K.S. Bowden, A. Achilli, A.E. Childress, Organic ionic salt draw solutions for osmotic membrane bioreactors, Bioresource technology 122 (2012) 207-216. [59] D. Li, X. Zhang, J. Yao, G.P. Simon, H. Wang, Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination, Chemical Communications 47(6) (2011) 1710-1712. [60] H.G. Zeweldi, A.P. Bendoy, M.J. Park, H.K. Shon, H.-S. Kim, E.M. Johnson, H. Kim, S.-P. Lee, W.-J. Chung, G.M. Nisola, Tetrabutylammonium 2, 4, 6-trimethylbenzenesulfonate as an effective and regenerable thermo-responsive ionic liquid drawing agent in forward osmosis for seawater desalination, Desalination 495 (2020) 114635. [61] H. Luo, K. Wu, Q. Wang, T.C. Zhang, H. Lu, H. Rong, Q. Fang, Forward osmosis with electro-responsive P (AMPS-co-AM) hydrogels as draw agents for desalination, Journal of Membrane Science 593 (2020) 117406. [62] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance, Journal of membrane science 278(1-2) (2006) 114-123. [63] G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination 197(1-3) (2006) 1-8. [64] S. Zhao, L. Zou, Relating solution physicochemical properties to internal concentration polarization in forward osmosis, Journal of Membrane Science 379(1-2) (2011) 459-467. [65] C.Y. Tang, Q. She, W.C. Lay, R. Wang, A.G. Fane, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration, Journal of membrane science 354(1-2) (2010) 123-133. [66] A.E. Turcios, J. Papenbrock, Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?, Sustainability 6(2) (2014) 836-856. [67] J.M. Carlberg, J.C. Van Olst, M.J. Massingill, R.J. Chamberlain, Aquaculture wastewater treatment system and method of making same, Google Patents, 2002. [68] S. Phuntsho, J.E. Kim, M.A. Johir, S. Hong, Z. Li, N. Ghaffour, T. Leiknes, H.K. Shon, Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation, Journal of Membrane Science 508 (2016) 22-31. [69] F. Volpin, L. Chekli, S. Phuntsho, J. Cho, N. Ghaffour, J.S. Vrouwenvelder, H.K. Shon, Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis, Chemosphere 203 (2018) 482-489. [70] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance, Environmental science & technology 36(6) (2002) 1202-1211. [71] N. Nakada, T. Tanishima, H. Shinohara, K. Kiri, H. Takada, Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment, Water research 40(17) (2006) 3297-3303. [72] S. Kim, K.H. Chu, Y.A. Al-Hamadani, C.M. Park, M. Jang, D.-H. Kim, M. Yu, J. Heo, Y. Yoon, Removal of contaminants of emerging concern by membranes in water and wastewater: a review, Chemical Engineering Journal 335 (2018) 896-914. [73] S. Lee, M. Ihara, N. Yamashita, H. Tanaka, Improvement of virus removal by pilot-scale coagulation-ultrafiltration process for wastewater reclamation: effect of optimization of pH in secondary effluent, Water research 114 (2017) 23-30. [74] M. Al-Obaidi, J.-P. Li, C. Kara-Zaitri, I.M. Mujtaba, Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms, Chemical Engineering Journal 316 (2017) 91-100. [75] A.T. Fane, R. Wang, Y. Jia, Membrane technology: past, present and future, Membrane and Desalination Technologies, Springer2011, pp. 1-45. [76] S.P. Nunes, P.Z. Culfaz-Emecen, G.Z. Ramon, T. Visser, G.H. Koops, W. Jin, M.J.J.o.M.S. Ulbricht, Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes, Journal of Membrane Science 598 (2020) 117761. [77] G.R. Guillen, Y. Pan, M. Li, E.M. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review, Industrial & Engineering Chemistry Research 50(7) (2011) 3798-3817. [78] W. Xu, Q. Chen, Q. Ge, Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes, Desalination 419 (2017) 101-116. [79] O. Serbanescu, S. Voicu, V.J.M.T.C. Thakur, Polysulfone functionalized membranes: Properties and challenges, Materials Today Chemistry 17 (2020) 100302. [80] W.W. Lau, M.D. Guiver, T. Matsuura, Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems, Journal of membrane science 59(2) (1991) 219-227. [81] J.-F. Blanco, J. Sublet, Q.T. Nguyen, P. Schaetzel, Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process, Journal of membrane science 283(1-2) (2006) 27-37. [82] C. Barth, M. Goncalves, A. Pires, J. Roeder, B. Wolf, Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance, Journal of Membrane Science 169(2) (2000) 287-299. [83] R.X. Zhang, J. Vanneste, L. Poelmans, A. Sotto, X.L. Wang, B. Van der Bruggen, Effect of the manufacturing conditions on the structure and performance of thin‐film composite membranes, Journal of applied polymer science 125(5) (2012) 3755-3769. [84] A.K. Ghosh, E.M. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes, Journal of membrane science 336(1-2) (2009) 140-148. [85] J. Blanco, Q. Nguyen, P. Schaetzel, Sulfonation of polysulfones: Suitability of the sulfonated materials for asymmetric membrane preparation, Journal of applied polymer science 84(13) (2002) 2461-2473. [86] G. Han, S. Zhang, X. Li, N. Widjojo, T.-S. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection, Chemical Engineering Science 80 (2012) 219-231. [87] D. Emadzadeh, W.J. Lau, T. Matsuura, M. Rahbari-Sisakht, A.F. Ismail, A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination, Chemical Engineering Journal 237 (2014) 70-80. [88] T. Sirinupong, W. Youravong, D. Tirawat, W. Lau, G. Lai, A. Ismail, Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications, Arabian Journal of Chemistry 11(7) (2018) 1144-1153. [89] N. Ismail, A. Venault, J.-P. Mikkola, D. Bouyer, E. Drioli, N.T.H. Kiadeh, Investigating the potential of membranes formed by the vapor induced phase separation process, Journal of Membrane Science 597 (2020) 117601. [90] A. Tiraferri, N.Y. Yip, W.A. Phillip, J.D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, Journal of membrane science 367(1-2) (2011) 340-352. [91] E. Fontananova, J.C. Jansen, A. Cristiano, E. Curcio, E. Drioli, Effect of additives in the casting solution on the formation of PVDF membranes, Desalination 192(1-3) (2006) 190-197. [92] A. Mansourizadeh, A. Ismail, Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption, Chemical Engineering Journal 165(3) (2010) 980-988. [93] N.B. Darwish, A. Alkhudhiri, H. AlRomaih, A. Alalawi, M.C. Leaper, N. Hilal, Effect of lithium chloride additive on forward osmosis membranes performance, Journal of Water Process Engineering 33 (2020) 101049. [94] S. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes, Journal of Membrane Science 150(1) (1998) 75-85. [95] C. Fang, W. Liu, P. Zhang, S. Rajabzadeh, N. Kato, Y. Sasaki, H.K. Shon, H. Matsuyama, Hollow fiber membranes with hierarchical spherulite surface structure developed by thermally induced phase separation using triple-orifice spinneret for membrane distillation, Journal of Membrane Science 618 (2021) 118586. [96] A.Z. Samuel, S. Umapathy, S. Ramakrishnan, Functionalized and postfunctionalizable porous polymeric films through evaporation-induced phase separation using mixed solvents, ACS applied materials & interfaces 3(9) (2011) 3293-3299. [97] H. Tsai, C. Kuo, J. Lin, D. Wang, A. Deratani, C. Pochat-Bohatier, K. Lee, J. Lai, Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation, Journal of Membrane Science 278(1-2) (2006) 390-400. [98] Y. Song, P. Sun, L.L. Henry, B. Sun, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, Journal of membrane science 251(1-2) (2005) 67-79. [99] H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, D. Losic, C.P. Saint, M. Ginic-Markovic, A novel fabrication approach for multifunctional graphene-based thin film nano-composite membranes with enhanced desalination and antibacterial characteristics, Scientific reports 7(1) (2017) 1-10. [100] J. Wei, X. Liu, C. Qiu, R. Wang, C.Y. Tang, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, Journal of Membrane Science 381(1-2) (2011) 110-117. [101] A.P. Rao, S. Joshi, J. Trivedi, C. Devmurari, V. Shah, Structure–performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation, Journal of Membrane Science 211(1) (2003) 13-24. [102] B. Khorshidi, T. Thundat, B. Fleck, M. Sadrzadeh, Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions, RSC Advances 5(68) (2015) 54985-54997. [103] M. Ghanbari, D. Emadzadeh, W. Lau, S. Lai, T. Matsuura, A. Ismail, Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination, Desalination 358 (2015) 33-41. [104] N. Akther, S. Phuntsho, Y. Chen, N. Ghaffour, H.K. Shon, Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes, Journal of Membrane Science 584 (2019) 20-45. [105] Y. Huang, H. Jin, P. Yu, Y. Luo, Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis, Desalination and Water Treatment 57(43) (2016) 20177-20187. [106] E.-S. Kim, G. Hwang, M.G. El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, Journal of membrane science 394 (2012) 37-48. [107] N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis, Journal of Membrane Science 405 (2012) 149-157. [108] S.H. Kim, S.-Y. Kwak, B.-H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, Journal of Membrane Science 211(1) (2003) 157-165. [109] M. Rong, M. Zhang, W. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review, Materials science and technology 22(7) (2006) 787-796. [110] M. Amini, A. Rahimpour, M. Jahanshahi, Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes, Desalination and Water Treatment 57(30) (2016) 14013-14023. [111] D. Jang, S. Jeong, A. Jang, S. Kang, Relating solute properties of contaminants of emerging concern and their rejection by forward osmosis membrane, Science of The Total Environment 639 (2018) 673-678. [112] N.T. Hancock, P. Xu, D.M. Heil, C. Bellona, T.Y. Cath, Comprehensive bench-and pilot-scale investigation of trace organic compounds rejection by forward osmosis, Environmental science & technology 45(19) (2011) 8483-8490. [113] Y. Yoon, P. Westerhoff, S.A. Snyder, E.C. Wert, Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products, Journal of Membrane Science 270(1-2) (2006) 88-100. [114] H. Lonsdale, R. Riley, C. Lyons, D. Carosella Jr, 1971," Transport in composite reverse osmosis membranes," in" Membrane Processes in Industry and Biomedicine," M. Bier, Plenum Press, New York. [115] S.S. Manickam, J.R. McCutcheon, Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches, Desalination 421 (2017) 110-126. [116] H. Ettouney, R. Aldaihani, Analysis of model parameters for the prediction of mass transfer resistance for forward osmosis and pressure-retarded osmosis configurations, Desalination 493 (2020) 114641. [117] X. Tongwen, Y. Weihua, Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis, Journal of membrane Science 203(1-2) (2002) 145-153. [118] M. Son, T. Kim, W. Yang, C.A. Gorski, B.E. Logan, Electro-forward osmosis, Environmental science & technology 53(14) (2019) 8352-8361. [119] S. Zou, Z. He, Electrolysis-assisted mitigation of reverse solute flux in a three-chamber forward osmosis system, Water research 115 (2017) 111-119. [120] P. Liu, H. Zhang, Y. Feng, C. Shen, F. Yang, Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater, Journal of hazardous materials 296 (2015) 248-255. [121] 林青世, 林怡利, 功能性正滲透薄膜的製備與應用, (2020). [122] M. Duan, Z. Wang, J. Xu, J. Wang, S. Wang, Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance, Separation and purification technology 75(2) (2010) 145-155. [123] Y. Yang, Y.S. Ok, K.-H. Kim, E.E. Kwon, Y.F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Science of the Total Environment 596 (2017) 303-320. [124] H.-T. Lai, J.-H. Hou, Light and microbial effects on the transformation of four sulfonamides in eel pond water and sediment, Aquaculture 283(1-4) (2008) 50-55. [125] C. Bellona, M. Marts, J.E. Drewes, The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes, Separation and Purification Technology 74(1) (2010) 44-54. [126] L. Jin, Z. Wang, S. Zheng, B.J.J.o.M.S. Mi, Polyamide-crosslinked graphene oxide membrane for forward osmosis, Journal of Membrane Science 545 (2018) 11-18. [127] T.P.N. Nguyen, B.-M. Jun, Y.-N.J.J.o.M.S. Kwon, The chlorination mechanism of integrally asymmetric cellulose triacetate (CTA)-based and thin film composite polyamide-based forward osmosis membrane, Journal of Membrane Science 523 (2017) 111-121. [128] M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.-M. Li, G. Chen, W.-J. Chung, H.K. Shon, Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes, Journal of Membrane Science 493 (2015) 496-507. [129] A.K. Hołda, I.F. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes, Journal of Applied Polymer Science 132(27) (2015). [130] M. Ghanbari, D. Emadzadeh, W. Lau, T. Matsuura, M. Davoody, A.J.D. Ismail, Super hydrophilic TiO2/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application, Desalination 371 (2015) 104-114. [131] Y.H. Cho, J. Han, S. Han, M.D. Guiver, H.B.J.J.o.m.s. Park, Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis, Journal of membrane science 445 (2013) 220-227. [132] A. Ahmad, B. Ooi, A. Wahab Mohammad, J.J.J.o.a.p.s. Choudhury, Effect of constricted polymerization time on nanofiltration membrane characteristic and performance: A study using the Donnan Steric Pore Flow Model, Journal of applied polymer science 94(1) (2004) 394-399. [133] S.S. Dhumal, S.J. Wagh, A.J.J.o.M.S. Suresh, Interfacial polycondensation—Modeling of kinetics and film properties, Journal of Membrane Science 325(2) (2008) 758-771. [134] J.M. Gohil, P.J.S. Ray, P. Technology, A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination, Separation and Purification Technology 181 (2017) 159-182. [135] M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, E.M.J.L. Hoek, Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes, Langmuir 25(17) (2009) 10139-10145. [136] C.Y. Tang, Y.-N. Kwon, J.O.J.D. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination 242(1-3) (2009) 149-167. [137] W. Song, V. Ravindran, B.E. Koel, M.J.J.o.M.S. Pirbazari, Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization, Journal of Membrane Science 241(1) (2004) 143-160. [138] Y. Lei, H. Lei, J.J.P.D. Huo, Stability, Innovative controllable photocatalytic degradation of polystyrene with hindered amine modified aromatic polyamide dendrimer/polystyrene-grafted-TiO2 photocatalyst under solar light irradiation, Polymer Degradation and Stability 118 (2015) 1-9. [139] Z. Alihemati, S. Hashemifard, T. Matsuura, A. Ismail, N. Hilal, Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap, Desalination 491 (2020) 114557. [140] M. Yasukawa, S. Mishima, M. Shibuya, D. Saeki, T. Takahashi, T. Miyoshi, H.J.J.o.M.S. Matsuyama, Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support, Journal of Membrane Science 487 (2015) 51-59. [141] T.Y. Cath, M. Elimelech, J.R. McCutcheon, R.L. McGinnis, A. Achilli, D. Anastasio, A.R. Brady, A.E. Childress, I.V. Farr, N.T.J.D. Hancock, Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination 312 (2013) 31-38. [142] S. Zhang, F. Fu, T.-S.J.C.E.S. Chung, Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power, Chemical Engineering Science 87 (2013) 40-50. [143] M. Park, J.J. Lee, S. Lee, J.H.J.J.o.M.S. Kim, Determination of a constant membrane structure parameter in forward osmosis processes, Journal of Membrane Science 375(1-2) (2011) 241-248. [144] S.F. Seyedpour, A. Rahimpour, A.A. Shamsabadi, M.J.C.E.R. Soroush, Design, Improved performance and antifouling properties of thin-film composite polyamide membranes modified with nano-sized bactericidal graphene quantum dots for forward osmosis, Chemical Engineering Research and Design 139 (2018) 321-334. [145] M. Xie, W.E. Price, L.D.J.S. Nghiem, P. Technology, Rejection of pharmaceutically active compounds by forward osmosis: Role of solution pH and membrane orientation, Separation and Purification Technology 93 (2012) 107-114.
|