Akbarzadeh, R., Fung, C. S.L., Rather, R. A., & Lo, I.M.C. (2018). One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen, Chemical Engineering Journal, 341, 248–261.
Akel, S., Dillert, R., Balayeva, N. O., Boughaled, R., Koch, J., Azzouzi, M. E., & Bahnemann, D. W. (2018). Ag/Ag2O as a Co-Catalyst in TiO2 Photocatalysis: Effect of the Co-Catalyst/Photocatalyst Mass Ratio, Catalysts, 8, 647.
Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., & Watanabe, T. (2008). A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 130(5), 1676–1680.
Bajaj, R., Sharma, M., & Bahadur, D. (2013). Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Transactions, 42(19), 6736–6744.
Belver, C., Adan, C., Garcia-Rodriguez, S., & Fernandez-Garcia, M. (2013). Photocatalytic behavior of silver vanadates: microemulsion synthesis and post-reaction characterization. Chemical Engineering Journal, 224, 24–31.
Cai, P., Zhou, S. M., Ma, D. K., Liu, S. N., Chen, W., & Huang, S. M. (2015). Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Letters, 7(2), 183–193.
Chen, Q., Wang, Y., Wang, Y., Zhang, X., Duan, D., & Fan, C. (2017). Nitrogen-doped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability. Journal of Colloid and Interface Sciences, 491, 238–245.
Colindres, P., Yee-Madeira, H., & Reguera, E. (2010). Removal of reactive black 5 from aqueous solution by ozone for water reuse in textile dyeing processes. Desalination, 258(1–3), 154–158.
Creutz, C., Brunschwig, B. S., & Sutin, N. (2006). Interfacial charge transfer absorption: application to metal–molecule assemblies. Chemical Physics, 324, 244–258.
Cui, Y., Liu, X. Y., Chung, T. S., Weber, M., Staudt, C., & Maletzko, C. (2016). Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO). Water Research, 91, 104–114.
Cui, D. H., Zheng, Y. F., & Song, X. C. (2017). A novel visible-light-driven photocatalyst Ag2O/AgI with highly enhanced photocatalytic performances, Journal of Alloys and Compounds, 701, 163–169.
Du, X., Wan, J., Jia, J., Pan, C., Hu, X., Fan, J., & Liu, E. (2017). Photocatalystic degradation of RhB over highly visible-light-active Ag3PO4-Bi2MoO6 heterojunction using H2O2 electron capturer. Materials and Design, 119, 113–123.
Fedorov, K., Jia, L., Guo, X., & Li, J. (2016). Influence of sulfation treatment on photocatalytic performance of mesoporous Bi2O3–TiO2 composites. Journal of Nanoscience and Nanotechnology, 16, 7490–7496.
Gadipelly, C., Perez-Gonzalez, A., Yadav, G. D., Ortiz, I., Ibanez, R., Rathod, V. K., & Marathe, K.V. (2014). Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, 53(29), 11571–11592.
Gao, X., Wang, Z., Fu, F., & Li, W. (2015). Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method, Materials Science in Semiconductor Processing, 35, 197–206.
Gotic, M., Music, S., Ivanda, M., Soufek, M., & Popovic, S. (2005). Synthesis and characterisation of bismuth(III) vanadate. Journal of Molecular Structure, 744–747, 535–540.
Hanaor, D., Michelazzi, M., Leonelli, C., & Sorrell, C. C. (2012). The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, Journal of the European Ceramic Society, 32, 235–244.
Hsieh, S. H., Manivel, A., Lee, G. J., & Wu, J. J. (2013). Synthesis of mesoporous Bi2O3/CeO2 microsphere for photocatalytic degradation of Orange II dye. Materials Research Bulletin, 48, 4174–4180.
Hu, X., & Hu, C. (2007). Preparation and visible-light photocatalytic activity of Ag3VO4 powders. Journal of Solid State Chemistry, 180, 725–732.
Hu, Z., Zhou, J., Zhang, Y., Liu, W., Zhou, J., & Cai, W. (2018). The formation of a direct Z-scheme Bi2O3/MoO3 composite nanocatalyst with improved photocatalytic activity under visible light, Chemical Physics Letters, 706, 208–214.
Huang, C. M., Pan, G. T., Li, Y. C. M., Li, M. H., & Yang, T. C. K. (2009). Crystalline phases and photocatalytic activities of hydrothermal synthesis Ag3VO4 and Ag4V2O7 under visible light irradiation. Applied Catalysis A: General, 358, 164–172.
Jiang, H., Dai, H., Meng, X., Zhang, L., Deng, J., Liu, Y., & Au, C. T. (2011a). Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. Journal of Environmental Sciences, 24(3), 449–457.
Jiang, H., Dai, H., Meng, X., Ji, K., Zhang, L., & Deng, J. (2011b). Porous olive-like BiVO4: alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol. Applied Catalysis B, Environmental, 105(3–4), 326–334.
Jiang, L., Chen, D., Qin, L., Liang, J., Sun, X., & Huang, Y. (2019). Enhanced photocatalytic activity of hydrogenated BiVO4 with rich surface-oxygen-vacancies for remarkable degradation of tetracycline hydrochloride, Journal of Alloys and Compounds, 783, 10–18.
Joseph, C. G., Li Puma, G., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16(5), 583–589.
Ju, P., Wang, P., Li, B., Fan, H., Ai, S., Zhang, D., & Wang, Y. (2014). A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chemical Engineering Journal, 236, 430–437.
Karunakaran, C., Kalaivani, S., Vinayagamoorthy, P., & Dash, S. (2014). Optical, electrical and visible light-photocatalytic properties of yttrium-substituted BiVO4 nanoparticles. Materials Letters, 122, 21–24
Keim, W. (2003). Multiphase catalysis and its potential in catalytic processes: the story of biphasic homogeneous catalysis. Green Chemistry, 5(2), 105–111.
Kudo, A. Ueda, K., Kato, H., & Mikami, I. (1998). Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters, 53, 229–230.
Lai, C., Zhang, M., Li, B., Huang, D., Zeng, G., Qin, L., Liu, X., Yi, H., Cheng, M., Li, L., Chen, Z., & Chen, L. (2019). Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight, Chemical Engineering Journal, 358, 891–902.
Lee, J. W., Choi, S. P., Thiruvenkatachari, R., Shim, W. G., & Moon, H. (2006). Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 69(3), 196–203.
Li, K., Yang, C., Xu, Y., Ying, D., Wang, Y., & Jia, J. (2012). Effect of inorganic anions on Rhodamine B removal under visible light irradiation using Bi2O3/Ti rotating disk reactor. Chemical Engineering Journal, 211–212, 208–215.
Li, Z. Q., Chen, X. T., & Xue, Z. L. (2013). Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3–Bi2WO6 composite, Journal of Colloid and Interface Science, 394, 69–77.
Li, J., Zhao, W., Guo, Y., Wei, Z., Han, M., He, H., Yang, S., & Sun, C. (2015). Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Applied Surface Science, 351, 270–279.
Li, T., Hu, X., Liu, C., Tang, C., Wang, X., & Luo, S. (2016). Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 425, 124–135.
Li, X., Zhou, M., Pan, Y., Xu, L., & Tang, Z. (2017a). Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe0 for wastewater treatment. Separation and Purification Technology, 178, 49–55.
Li, F., Wang, F., Meng, L., Han, M., Guo, Y., & Sun, C. (2017b). Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal. Journal of Colloid and Interface Science, 485, 116–122
Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J., & Wang, Z. (2017c). Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 501, 156–163.
Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J., & Wang, Z. (2017d). Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity, Journal of Colloid and Interface Science, 501, 156–163.
Li, Y., Xiao, X., & Ye, Z. (2019). Fabrication of BiVO4/RGO/Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance, Applied Surface Science, 467–468, 902–911.
Liang, Z., Cao, Y., Li, Y., Xie, J., Guo, N., & Jia, D. (2016). Solid-state chemical synthesis of rod-like fluorine-doped β-Bi2O3 and their enhanced photocatalytic property under visible light. Applied Surface Science, 390, 78–85.
Liu, S., Tang, H., Zhou, H., Dai, G., & Wang, W. (2016). Photocatalytic perfermance of sandwich-like BiVO4 sheets by microwave assisted synthesis. Applied Surface Science, 391, 542–547.
Lu, Y., Shang, H., Shi, F., Chao, C., Zhang, X., & Zhang, B. (2015). Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies. Journal of Physics and Chemistry of Solids, 85, 44–50.
Lu, G., Wang, F., & Zou, X. (2017). Hydrothermal synthesis of m-BiVO4 and m-BiVO4/BiOBr with various facets and morphologies and their photocatalytic performance under visible light. Journal of Alloys and Compounds, 697, 417–426.
Magesan, P., Ganesan, P., & Umapathy, M. J. (2016). Ultrasonic-assisted synthesis of doped TiO2 nanocomposites: characterization and evaluation of photocatalytic and antimicrobialactivity. Optik, 127, 5171–5180.
Malathi, A., Madhavan, J., Ashokkumar, M., & Arunachalam, P. (2018). A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Applied Catalysis A, General, 555, 47–74.
Mao, M., Chen, F., Zheng, C., Ning, J., Zhong, Y., & Hu, Y. (2016). Facile synthesis of porous Bi2O3-BiVO4 p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol. Journal of Alloys and Compounds, 688, 1080–1087.
Mehring, M. (2007). From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coordination Chemistry Reviews, 251(7–8), 974–1006.
Meng, X., Zhang, L., Dai, H., Zhao, Z., Zhang, R., & Liu, Y. (2011). Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Materials Chemistry and Physics, 125, 59–65.
Obregón, S., Caballero, A., & Colón, G. (2012). Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity, Applied Catalysis B: Environmental, 117–118, 59–66.
Pan, G. T., Lai, M. H., Juang, R. C., Chung, T. W., & Yang, T. C. K. (2011). Preparation of visible-light-driven silver vanadates by a microwave-assisted hydrothermal method for the photodegradation of volatile organic vapors. Industrial & Engineering Chemistry Research, 50, 2807–2814.
Ran, R., Meng, S., & Zhang, Z. (2016a). Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activitiesunder visible light irradiation. Applied Catalysis B: Environmental, 196, 1–15.
Ran, R., Mcevoy, J. G., & Zhang, Z. (2016b). Ag2O/Ag3VO4/Ag4V2O7 heterogeneous photocatalyst prepared by a facile hydrothermal synthesis with enhanced photocatalytic performance under visible light irradiation. Materials Research Bulletin, 74, 140–150.
Saison, T., Chemin, N., Chaneac, C., Durupthy, O., Ruaux, V., Mariey, L., Mauge, F., Beaunier, P., & Jolivet, J. P. (2011). Bi2O3, BiVO4, and Bi2WO6 : impact of surface properties on photocatalytic activity under visible light. The Journal of Physical Chemistry C, 115(13), 5657–5666.
Samran, B., lunput, S., Tonnonchiang, S., & Chaiwichian, S. (2019). BiFeO3/BiVO4 nanocomposite photocatalysts with highly enhanced photocatalytic activity for rhodamine B degradation under visible light irradiation, Physica B: Condensed Matter, 561, 23–28.
Sangiorgi, N., Aversa, L., Tatti, R., Verucchi, R., & Sanson, A. (2017). Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Optical Materials, 64, 18–25.
Sasaki, Y., Nemoto, H., Saito, K., & Kudo, A. (2009). Solar water splitting using powdered photocatalysts driven by z-schematic interparticle electron transfer without an electron mediator. Journal of Physical Chemistry C, 113(40), 17536–17542.
Shi, H., Zhang, C., & Zhou, C. (2015). g-C3N4 hybridized with AgVO3 nanowires: preparation and its enhanced visible-light-induced photocatalytic activity. RSC Advances, 5, 50146–50154.
Shi, Y., Luo, L., Zhang, Y., Chen, Y., Wang, S., Li, L., Long, Y., & Jiang, F. (2017). Synthesis and characterization of α/β-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. Ceramics International, 43(10), 7627–7635.
Sun, J., Li, X., Zhao, Q., Tade, M., & Liu, S. (2013). Quantum-sized BiVO4 modified TiO2 microflower composite heterostructure: efficient production of hydroxyl radicals towards visible light-driven degradation of gaseous toluene. Journal of Materials Chemistry A, 00, 1–3.
Sun, J., Li, X., Zhao, Q., Ke, J., & Zhang, D. (2014). Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. The Journal of Physical Chemistry C, 118, 10113–10121.
Vu, T. A., Dao, C. D., Hoang, T. T. T., Dang, P. T., Tran, H. T. K., Nguyen, K. T., Le, G. H., Nguyen, T. V., & Lee, G. D. (2014). Synthesis of novel silver vanadates with high photocatalytic and antibacterial activities. Materials Letters, 123, 176–180.
Wang, M., Liu, Q., Che, Y., Zhang, L., & Zhang, D. (2013). Characterization and photocatalytic properties of n-doped BiVO4 synthesized via a sol-gel method. Journal of Alloys and Compounds journal, 548, 70–76.
Wang, S., Guan, Y., Wang, L., Zhao, W., He, H., Xiao, J., Yang, S., & Sun, C. (2015). Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Applied Catalysis B: Environmental, 168–169, 448–457.
Wang, M., Xi, X., Gong, C., Zhang, X. L., & Fan, G. (2016a). Open porous BiVO4 nanomaterials: electronspinning fabrication and enhanced visible light photocatalytic activity. Materials Research Bulletin, 74, 258–264.
Wang, M., Lu, W., Chen, D., Liu, J., Hu, B., Jin, L., Lin, Y., Yue, D., Huang, J., & Wang, Z. (2016b). Synthesis of dendritic-like BiVO4: Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution. Materials Research Bulletin, 84, 414–421.
Wang, W. W., Zhu, D., Shen, Z., Peng, J., Luo, J., & Liu, X. H. (2016c). One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity. Industrial & Engineering Chemistry Research, 55, 6373−6383.
Wang, P., Tang, H., Ao, Y., Wang, C., Hou, J., Qian, J., & Li, Y. (2016d). In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation. Journal of Alloys and Compounds, 688, 1–7.
Wang, X., Zhou, J., Zhao, S., Chen, X., & Yu, Y. (2018). Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites, Applied Surface Science, 453, 394–404.
Wangkawong, K., Phanichphant, S., Tantraviwat, D., & Inceesungvorn, B. (2015). CoTiO3/Ag3VO4 composite: a study on the role of CoTiO3 and the active species in the photocatalytic degradation of methylene blue. Journal of Colloid and Interface Science, 454, 210–215.
Wei, W., Yue, X., Cui, H., Lu, X., & Xie, J. (2013). Hydrothermal synthesis and properties of BiVO4 photocatalysts. Journal of Materials Research, 28(24), 3408–3416.
Wetchakun, N., Chainet, S., Phanichphant, S., & Wetchakun, K. (2015). Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites, Ceramics International, 41, 5999–6004.
Wu, C. H. (2004). Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor system. Chemosphere, 57, 601–608.
Xie, Y., Dai, Y., Yuan, X., Jiang, L., Zhou, L., Wu, Z., Zhang, J., Wang, H., & Xiong, T. (2018). Insight on the plasmonic Z-scheme mechanism underlying the highly efficient photocatalytic activity of silver molybdate/silver vanadate composite in rhodamine B degradation, Journal of Colloid and Interface Science, 530, 493–504.
Xu, J., Hu, C., Xi, Y., Wan, B., Zhang, C., & Zhang, Y. (2012). Synthesis and visible light photocatalytic activity of b-AgVO3 nanowires. Solid State Sciences, 14, 535–539.
Xue, S., Wei, Z., Hou, X., Xie, W., Li, S., Shang, X., & He, D. (2015). Enhanced visible-light photocatalytic activities and mechanism insight of BiVO4/Bi2WO6 composites with virus-like structures. Applied Surface Science, 355, 1107–1115.
Yuan, H., Liu, J., Li, J., Li, Y., Wang, X., Zhang, Y., Jiang, J., Chen, S., Zhao, C., & Qian, D. (2015). Designed synthesis of a novel BiVO4-Cu2O-TiO2 as an efficient visible-light-resonding photocatalyst. Journal of Colloid and Interface Science, 444, 58–66.
Yue, L., Wang, S., Shan, G., Wu, W., Qiang, L., & Zhu, L. (2015). Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water. Applied Catalysis B: Environmental, 176–177, 11–19.
Yu, M., Shang, C., Meng, G. Q., Chen, Z., Jin, M., Shui, L., Zhang, Y., Zhang, Z., Yuan, M., Wang, X., & Zhou, G. (2019). Synthesis and characterization of mesoporous BiVO4 nanofibers with enhanced photocatalytic water oxidation performance, Applied Surface Science, 481, 255–261.
Zhan, J., & Ma, Z. (2017). Enhanced visible-light photocatalytic performance of Ag3VO4/Bi2WO6 heterojunctions in removing aqueous dyes and tetracycline hydrochloride. Journal of the Taiwan Institute of Chemical Engineers, 78, 212–218.
Zhang, X., Dong, W., & Yang, W. (2013). Decolorization efficiency and kinetics of typical reactive azo dye RR2 in the homogeneous Fe(II) catalyzed ozonation process. Chemical Engineering Journal 233, 14–23.
Zhang, T., Liu, M., Meng, Y., Huang, B., Pu, X., & Shao, X. (2018). A novel method for the synthesis of Ag3VO4/Ag2VO2PO4 heterojunction photocatalysts with improved visible-light photocatalytic properties, Separation and Purification Technology, 206, 149–157.
Zhao, X., Huang, J., Feng, L., Cao, L., Li, J., & Zhou, L. (2017). Facile synthesis of α-Ag3VO4 hollow nanospheres with improved photocatalytic activities. Journal of Alloys and Compounds, 718, 7–14.
Zhao, W., Feng, Y., Huang, H., Zhou, P., Li, J., Zhang, L., Dai, B., Xu, J., Zhu, F., Sheng, N., & Leung, D. Y. C. (2019). A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism, Applied Catalysis B: Environmental, 245, 448–458.
Zhou, L., Wang, W., Liu, S., Zhang, L., Xu, H., & Zhu, W. (2006). A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. Journal of Molecular Catalysis A: Chemical, 252(1–2), 120–124.
Zhou, Y., Vuille, K., Heel, A., Probst, B., Kontic, R., & Patzke, G. R. (2010a). An inorganic hydrothermal route to photocatalytically active bismuth vanadate. Applied Catalysis A: General, 375(1), 140–148.
Zhou, B., Zhao, X., Liu, H., Qu, J., & Huang, C.P. (2010b). Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions, Applied Catalysis B: Environmental, 99, 214–221.
Zhou, B., Zhao, X., Liu, H., Qu, J., & Huang, C.P. (2011). Synthesis of visible-light sensitive M–BiVO4 (M = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants, Separation and Purification Technology, 77, 275–282.
Zou, X., Dong, Y., Zhang, X., & Cui, Y. (2016). Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation. Applied Surface Science, 366, 173–180.
陳威名,(2017)以水熱法製備及改質釩酸鉍為可見光激發觸媒之研究,國立高雄應用科技大學,碩士論文。關育聖,(2017)三氧化二鉍/釩酸銀複合材料之光催化應用及表面特性分析,國立高雄應用科技大學,碩士論文。林永輝,(2018)三氧化二鉍改質釩酸鹽氧化物為可見光激發觸媒之研究,國立高雄科技大學,碩士論文。