|
[1]Hewitt, C., Bishop, P., & Steiger, R. (1973, August). A universal modular actor formalism for artificial intelligence. In Proceedings of the 3rd international joint conference on Artificial intelligence(pp. 235-245). [2]Bishop, C. M. (2006). Pattern recognition and machine learning. springer. [3]Y. LeCun, Y. Bengio, and G. Hinton, ‘‘ Deep learning,’’ Nature, 521(7553), 436-444, 2015. [4]McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12. [5]Silver, D. et al.,“Mastering the Game of Go with Deep Neural Networks and Tree Search”, Nature, vol. 529, pp. 484-489, 2016. [6]A. Criminisi, ‘‘Machine learning for medical images analysis,’’ 2016. [7]C. Affonso, A. L. D. Rossi, F. H. A. Vieira, and A. C. P. de Leon Ferreira de Carvalho, ‘‘Deep learning for biological image classification,’’ Expert Systems with Applications, 85, 114-122, 2017. [8]D. Norris, ‘‘Shortlist: A connectionist model of continuous speech recognition,’’ Cognition, 52(3), 189-234, 1994. [9]G. G. Chowdhury, ‘‘Natural language processing,’’ Annual review of information science and technology, 37(1), 51-89, 2003. [10]Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15), 2627-2636. [11]Hinton, Geoffrey, et al. "Deep neural networks for acoustic modeling in speech recognition." IEEE Signal processing magazine 29 (2012). [12]Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association. [13]Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge." International Journal of Computer Vision 115.3 (2015): 211-252. [14]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). [15]LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [16]Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). [17]Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [18]Röntgen, W. C. (1898). Ueber eine neue Art von Strahlen. Annalen der Physik, 300(1), 1-11. [19]Hounsfield, G. N. (1995). Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. [20]Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. proceedings of the National Academy of Sciences, 87(24), 9868-9872. [21]Bailey, D. L., Maisey, M. N., Townsend, D. W., & Valk, P. E. (2005). Positron emission tomography. London: Springer. [22]Wagner, A., Mahrholdt, H., Holly, T. A., Elliott, M. D., Regenfus, M., Parker, M., ... & Judd, R. M. (2003). Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. The Lancet, 361(9355), 374-379. [23]Hoff, L. (2001). Acoustic characterization of contrast agents for medical ultrasound imaging. Springer Science & Business Media. [24]Russell, Stuart J., and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited, 2016. [25]Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. "Unsupervised learning." The elements of statistical learning. Springer, New York, NY, 2009. 485-585. [26]Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237-285. [27]林大貴,2017,TensorFlow + Keras 深度學習人工智慧實務應用,初版,博碩文化股份有限公司,新北市 [28]Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. [29]Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499). [30]Danielsson, Per-Erik. "Euclidean distance mapping." Computer Graphics and image processing 14.3 (1980): 227-248. [31]Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593-1599. [32]N. Gupta, ‘‘Artificial neural network,’’ Network and Complex Systems, 3(1), 24-28, 2013. [33]W. Cao, X. Wang, Z. Ming, and J. Gao, ‘‘A review on neural networks with random weights,’’ Neurocomputing, 2017. [34]高揚,2018,白話深度學習與TensorFlow,初版,碁峰資訊股份有限公司,台北市 [35]斎藤康毅,2017,Deep Learning :用python進行深度學習的基礎理論實作,吳嘉芳,初版,碁峰資訊股份有限公司,台北市 [36]Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1), 106-154. [37]Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202. [38]Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. Ieee, 2009. (http://dx.doi.org/10.1109/CVPR.2009.5206848) [39]黃文堅、唐源,2017,實戰 TensorFlow Google 深度學習,蔡勝文,初版,碁峰資訊股份有限公司,台北市 [40]Nick Locascio,2018,Deep Learning深度學習基礎|設計下一代人工智慧演算法,藍子軒,初版,碁峰資訊股份有限公司,台北市 [41]D. Kermany, K. Zhang, and M. Goldbaum, “Labeled optical coherence tomography (OCT) and Chest X-Ray images for classification,” Mendeley Data, v2, 2018, Available: http://dx.doi.org/10.17632/rscbjbr9sj.2 [42]Jabbar, H., & Khan, D. R. Z. (2015). Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study). Computer Science, Communication and Instrumentation Devices.
|