1.日本經濟新聞(2023),豐田換帥始末,https://zh.cn.nikkei.com/industry/icar/51201-2023-01-27-12-01-25.html?start=0, 擷取日期:2023/2/15。
2.李素杏(2023),運用文字探勘進行議員提案分案之研究−以新北市議會為例,致理科技大學企業管理系碩士論文。3.涂敏怡(2022),「開源創新對台灣資訊產業影響初探」,資訊社會研究,42,13-50。
4.國家發展委員會(2021),六大核心戰略產業堆動方案(核定本),國家發展委員會。
5.張瑋倫(2000),應用資料挖掘學習方法探討顧客關係管理問題,輔仁大學資訊管理學系研究所碩士論文。6.張鈺鴻(2021),應用文字探勘技術建構預測客訴問題類別機器學習模型,國立中央大學資訊管理學系硏究所碩士論文。7.張維元(2021),身為資料科學家,R、Python 與 Julia 該怎麼選?,https://edge.aif.tw/which-programming-language-is-good/, 擷取日期:2023/3/1。
8.張簡宇傑(2020),基於文字探勘之智慧工程文件摘要系統,國立清華大學工業工程研究所碩士論文。9.許哲維(2019),運用資料探勘方法探討畢業生流向狀況−以國立虎尾科技大學學生為例,國立虎尾科技大學工業管理系工業工程與管理碩士班碩士論文。10.郭泰竹(2019),集成式學習應用於電子零件供應鏈需求預測,國立政治大學資訊管理學系研究所碩士論文。11.陳彥龍(2020),中文斷詞方法之研究與實作,國立暨南國際大學資訊工程學系碩士論文。12.陳群凱(2023),以文字探勘方法預測假新聞−以烏俄戰爭為例,國立成功大學工程科學系碩士論文。13.黃允亭(2022),應用實價登錄建立以聚類方法之堆疊泛化房價預測模型−以桃園市區分建物房價資料為例,國立政治大學經濟學系碩士論文。14.楊渝婷(2022),運用文字探勘技術建構使用鈉−葡萄糖共同轉運蛋白-2抑制劑之糖尿病腎病變患者腎功能改善預測模型,國立中正大學醫療資訊管理硏究所碩士論文15.潘怡秀(2018),資料探勘應用於醫藥物流中心藥品消耗預測,國立虎尾科技大學工業管理系工業工程與管理碩士班碩士論文。16.賴明助(2010),運用文字探勘技術於顧客問題分類之研究−以某ERP軟體公司為例,靜宜大學資訊碩士在職專班碩士論文。17.Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques, KDD Bigdas, Halifax, Canada.
18.Berry, M. J. A., & Linoff, G. S. (1997). Data Mining Techniques: For Marketing, Sales, and Customer Support, Wiley Publishing, Inc., New York.
19.Berson, A., Smith, S., & Thearling, K. (2000). Building Data Mining Applications for CRM, McGraw-Hill, New York.
20.Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1997). Discovering Data Mining: From Concept to Implementation, Prentice Hall, New York.
21.Coronado, M. B., Mori, U., Mendiburu, A., & Alonso, M. J. (2020). “Survey of Network Intrusion Detection Methods from the Perspective of the Knowledge Discovery in Databases Process”, https://doi.org/10.48550/arXiv.2001.09697.
22. Fayyad, U., Piatetsky, S. G., & Smyth, P. (1996). “From Data Mining to Knowledge Discovery in Databases” , AI Magazine, 17(3), pp. 37-54.
23.Friedman, J. H. (2001). “Greedy Function Approximation: A Gradient Boosting Machine”, The Annals of Statistics, 29(5), pp. 1189-1232.
24.GitHub jieba (2022), https://github.com/fxsjy/jieba, retrived date: 2022/10/18.
25.Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques, Third Edition, Morgan Kaufmann, New York.
26.Hassan, S. U., Ahamed, J., & Ahmad, K. (2022). “Analytics of Machine Learning-based Algorithms for Text Classification”, Sustainable Operations and Computers, 3, pp. 238-248.
27.Hotho, A., Nürnberger, A., & Paaß, G. (2005). “A Brief Survey of Text Mining”, Journal for Language Technology and Computational Linguistics, 20(1), pp. 19-62.
28.Kim, H., Soibelman, L., & Grobler, F. (2008). “Factor Selection for Delay Analysis Using Knowledge Discovery in Databases”, Automation in Construction, Vol. 17, pp. 550-560.
29.Kleissner, C. (1998). “Data Mining for the Enterprise”, Proceedings of the Thirty-First Hawaii International Conference, 7, pp. 295-304.
30.Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihok, G., & Den Hartog, D. N. (2018). “Text Mining in Organizational Research”, Organizational Research Methods, 21(3), pp. 733-765.
31.Lau, K. N., Lee, K. H., & Ho, Y. (2005). “Text mining for the hotel industry”, Cornell Hotel and Restaurant Administration Quarterly, 46(3), pp. 344-362.
32.Lee, S., Nguyen, N. H., Karamanli, A., Lee, J., & Vo, T. P. (2022). “Super Learner Machine-learning Algorithms for Compressive Strength Prediction of High Performance Concrete”, Structural Concrete, 24, pp. 2208–2228.
33.Maata, R. L. R., Pineda, A. P., Epoc, F. J., & Cordova, R. (2021). “Application of Text Mining to Analyze Customer Opinions on Social Media”, Global Business and Management Research: An International Journal, 13(3), pp. 1-9.
34.Matplotlib (2022). https://matplotlib.org, retrived date: 2022/10/18.
35.Mooney, R. J., & Nahm, U. Y (2005). “Text Mining with Information Extraction”, Multilingualism and Electronic Language Management: Proceedings of the 4th International MID Colloquium, pp.141-160.
36.NumPy (2022). https://numpy.org, retrived date: 2022/10/18.
37.openpyxl (2022). https://openpyxl.readthedocs.io, retrived date: 2022/10/18.
38.orange (2022). https://orangedatamining.com, retrived date: 2022/10/18.
39.Otten, N. V. (2023). How To Implement Logistic Regression Text Classification in Python with Scikit-learn and PyTorch, https://spotintelligence.com/2023/02/22/logistic-regression-text-classification-python.
40.pandas (2022). https://pandas.pydata.org, retrived date: 2022/10/18.
41.Python Package Index (2022). https://pypi.org, retrived date: 2022/10/18.
42.Python (2022). https://www.python.org, retrived date: 2022/10/18.
43.Qorib, M., Oladunni, T., Denis, M., Ososanya, E., & Paul, C. (2023). “Covid-19 Vaccine Hesitancy: Text Mining, Sentiment Analysis and Machine Learning on COVID-19 Vaccination Twitter Dataset”, Expert Systems with Applications, 212, 118715.
44.Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2017). “A Survey of Text Mining in Social Media: Facebook and Twitter Perspectives”, Advances in Science, Technology and Engineering Systems Journal, 2(1), pp. 127-133.
45.seaborn (2022). https://seaborn.pydata.org/#, retrived date: 2022/10/18.
46.Sun, C., & Luo, B. (2022). “Analysis of English Writing Text Features Based on Random Forest and Logistic Regression Classification Algorithm”, Mobile Information Systems, Volume 2022, Article ID 6306025, https://doi.org/10.1155/2022/6306025.
47.Tan, A. H. (2000). Text Mining: The State of the Art and the Challenges, https://www.researchgate.net/publication/2471634_Text_Mining_The_state_of_the_art_and_the_challenges.
48.Thuraisingham, B. (2000). “A Primer for Understanding and Applying Data Mining”, IT Professional, 2(1), pp. 28-31.