|
[1]Y. Abo-Madyan, M. H. Aziz, M. M. Aly, F. Schneider, E. Sperk, S. Clausen, et al., "Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer," Radiother Oncol, vol. 110, pp. 471-6, Mar 2014. [2]G. Early Breast Cancer Trialists' Collaborative, "Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials," Lancet, vol. 386, pp. 1341-1352, Oct 3 2015. [3]X. Sun, S. Su, C. Chen, F. Han, C. Zhao, W. Xiao, et al., "Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities," Radiother Oncol, vol. 110, pp. 398-403, Mar 2014. [4]J. Y. Chan, V. S. To, S. T. Wong, and W. I. Wei, "Radiation-induced squamous cell carcinoma of the nasopharynx after radiotherapy for nasopharyngeal carcinoma," Head Neck, vol. 36, pp. 772-5, Jun 2014. [5]C. H. Stokkevag, G. M. Engeseth, K. S. Ytre-Hauge, D. Rohrich, O. H. Odland, L. P. Muren, et al., "Estimated risk of radiation-induced cancer following paediatric cranio-spinal irradiation with electron, photon and proton therapy," Acta Oncol, vol. 53, pp. 1048-57, Aug 2014. [6]H. Peng, L. Chen, W. F. Li, R. Guo, Y. P. Mao, Y. Zhang, et al., "The Cumulative Cisplatin Dose Affects the Long-Term Survival Outcomes of Patients with Nasopharyngeal Carcinoma Receiving Concurrent Chemoradiotherapy," Sci Rep, vol. 6, pp. 24332, Apr 13 2016. [7]T. F. Lee, P. J. Chao, H. M. Ting, S. H. Lo, Y. W. Wang, C. C. Tuan, et al., "Comparative analysis of SmartArc-based dual arc volumetric-modulated arc radiotherapy (VMAT) versus intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma," J Appl Clin Med Phys, vol. 12, pp. 3587, Nov 15 2011. [8]B. Lee, S. Lee, J. Sung, and M. Yoon, "Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT," J Radiol Prot, vol. 34, pp. 325-31, Jun 2014. [9]G. Peng, T. Wang, K. Y. Yang, S. Zhang, T. Zhang, Q. Li, et al., "A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma," Radiother Oncol, vol. 104, pp. 286-93, Sep 2012. [10]R. M. Howell, S. B. Scarboro, P. J. Taddei, S. Krishnan, S. F. Kry, and W. D. Newhauser, "Methodology for determining doses to in-field, out-of-field and partially in-field organs for late effects studies in photon radiotherapy," Phys Med Biol, vol. 55, pp. 7009-23, Dec 07 2010. [11]M. Tyran, H. Mailleux, A. Tallet, P. Fau, L. Gonzague, M. Minsat, et al., "Volumetric-modulated arc therapy for left-sided breast cancer and all regional nodes improves target volumes coverage and reduces treatment time and doses to the heart and left coronary artery, compared with a field-in-field technique," J Radiat Res, vol. 56, pp. 927-37, Nov 2015. [12]A. Daşu, I. Toma-Daşu, J. Olofsson, and M. Karlsson, "The use of risk estimation models for the induction of secondary cancers following radiotherapy," Acta Oncologica, vol. 44, pp. 339-347, 2005/01/01 2005. [13]W. D. Newhauser and M. Durante, "Assessing the risk of second malignancies after modern radiotherapy," Nat Rev Cancer, vol. 11, pp. 438-48, Jun 2011. [14]D. Verellen and F. Vanhavere, "Risk assessment of radiation-induced malignancies based on whole-body equivalent dose estimates for IMRT treatment in the head and neck region," Radiother Oncol, vol. 53, pp. 199-203, Dec 1999. [15]N. R. Council, Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2 vol. 7: National Academies Press, 2006. [16]H. Suit, S. Goldberg, A. Niemierko, M. Ancukiewicz, E. Hall, M. Goitein, et al., "Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects," Radiat Res, vol. 167, pp. 12-42, Jan 2007. [17]C. M. Ronckers, A. J. Sigurdson, M. Stovall, S. A. Smith, A. C. Mertens, Y. Liu, et al., "Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers," Radiat Res, vol. 166, pp. 618-28, Oct 2006. [18]A. Thiagarajan and N. G. Iyer, "Radiation-induced sarcomas of the head and neck," World J Clin Oncol, vol. 5, pp. 973-81, Dec 10 2014. [19]A. Berrington de Gonzalez, E. Gilbert, R. Curtis, P. Inskip, R. Kleinerman, L. Morton, et al., "Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose-response relationship," Int J Radiat Oncol Biol Phys, vol. 86, pp. 224-33, Jun 01 2013. [20]P. A. Myers, P. Mavroidis, G. Komisopoulos, N. Papanikolaou, and S. Stathakis, "Pediatric Cranio-spinal Axis Irradiation: Comparison of Radiation-induced Secondary Malignancy Estimations Based on Three Methods of Analysis for Three Different Treatment Modalities," Technol Cancer Res Treat, vol. 14, pp. 169-80, Apr 2015. [21]A. Dasu and I. Toma-Dasu, "Dose-effect models for risk-relationship to cell survival parameters," Acta Oncol, vol. 44, pp. 829-35, 2005. [22]R. K. Sachs and D. J. Brenner, "Solid tumor risks after high doses of ionizing radiation," Proc Natl Acad Sci U S A, vol. 102, pp. 13040-5, Sep 13 2005. [23]I. Shuryak, P. Hahnfeldt, L. Hlatky, R. K. Sachs, and D. J. Brenner, "A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation," Radiat Environ Biophys, vol. 48, pp. 275-86, Aug 2009. [24]I. Shuryak, P. Hahnfeldt, L. Hlatky, R. K. Sachs, and D. J. Brenner, "A new view of radiation-induced cancer: integrating short- and long-term processes. Part I: approach," Radiat Environ Biophys, vol. 48, pp. 263-74, Aug 2009. [25]R. Zhang, R. M. Howell, A. Giebeler, P. J. Taddei, A. Mahajan, and W. D. Newhauser, "Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient," Phys Med Biol, vol. 58, pp. 807-23, Feb 21 2013. [26]U. Schneider, M. Sumila, J. Robotka, G. Gruber, A. Mack, and J. Besserer, "Dose-response relationship for breast cancer induction at radiotherapy dose," Radiat Oncol, vol. 6, pp. 67, 2011. [27]G. M. Dores, C. Metayer, R. E. Curtis, C. F. Lynch, E. A. Clarke, B. Glimelius, et al., "Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years," Journal of Clinical Oncology, vol. 20, pp. 3484-3494, 2002. [28]D. L. Preston, E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, et al., "Solid cancer incidence in atomic bomb survivors: 1958-1998," Radiat Res, vol. 168, pp. 1-64, Jul 2007. [29]R. V. Sethi, H. A. Shih, B. Y. Yeap, K. W. Mouw, R. Petersen, D. Y. Kim, et al., "Second nonocular tumors among survivors of retinoblastoma treated with contemporary photon and proton radiotherapy," Cancer, vol. 120, pp. 126-33, Jan 01 2014. [30]R. Epstein, I. Hanham, and R. Dale, "Radiotherapy-induced second cancers: are we doing enough to protect young patients?," Eur J Cancer, vol. 33, pp. 526-30, Apr 1997. [31]I. Diallo, N. Haddy, E. Adjadj, A. Samand, E. Quiniou, J. Chavaudra, et al., "Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer," Int J Radiat Oncol Biol Phys, vol. 74, pp. 876-83, Jul 01 2009. [32]S. F. Kry, M. Salehpour, D. S. Followill, M. Stovall, D. A. Kuban, R. A. White, et al., "The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy," Int J Radiat Oncol Biol Phys, vol. 62, pp. 1195-203, Jul 15 2005. [33]U. Schneider, R. A. Halg, M. Hartmann, A. Mack, F. Storelli, A. Joosten, et al., "Accuracy of out-of-field dose calculation of tomotherapy and cyberknife treatment planning systems: a dosimetric study," Z Med Phys, vol. 24, pp. 211-5, Sep 2014. [34]W. G. Cahan, H. Q. Woodard, N. L. Higinbotham, F. W. Stewart, and B. L. Coley, "Sarcoma arising in irradiated bone: report of eleven cases. 1948," Cancer, vol. 82, pp. 8-34, Jan 1 1998. [35]R. W. Harbron, R. G. Feltbower, A. Glaser, J. Lilley, and M. S. Pearce, "Secondary malignant neoplasms following radiotherapy for primary cancer in children and young adults," Pediatr Hematol Oncol, vol. 31, pp. 259-67, Apr 2014. [36]J. P. Neglia, L. L. Robison, M. Stovall, Y. Liu, R. J. Packer, S. Hammond, et al., "New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study," J Natl Cancer Inst, vol. 98, pp. 1528-37, Nov 01 2006. [37]C. Taylor, C. Correa, F. K. Duane, M. C. Aznar, S. J. Anderson, J. Bergh, et al., "Estimating the Risks of Breast Cancer Radiotherapy: Evidence From Modern Radiation Doses to the Lungs and Heart and From Previous Randomized Trials," J Clin Oncol, pp. JCO2016720722, Mar 20 2017. [38]H. Paganetti, B. S. Athar, M. Moteabbed, A. A. J, U. Schneider, and T. I. Yock, "Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field," Phys Med Biol, vol. 57, pp. 6047-61, Oct 7 2012. [39]R. Warschkow, U. Guller, T. Cerny, B. M. Schmied, L. Plasswilm, and P. M. Putora, "Secondary malignancies after rectal cancer resection with and without radiation therapy: A propensity-adjusted, population-based SEER analysis," Radiother Oncol, vol. 123, pp. 139-146, Apr 2017. [40]C. J. Wallis, P. Cheung, S. Herschorn, R. Saskin, J. Su, L. H. Klotz, et al., "Complications following surgery with or without radiotherapy or radiotherapy alone for prostate cancer," Br J Cancer, vol. 112, pp. 977-82, Mar 17 2015. [41]N. E. Verstegen, J. W. Oosterhuis, D. A. Palma, G. Rodrigues, F. J. Lagerwaard, A. van der Elst, et al., "Stage I-II non-small-cell lung cancer treated using either stereotactic ablative radiotherapy (SABR) or lobectomy by video-assisted thoracoscopic surgery (VATS): outcomes of a propensity score-matched analysis," Ann Oncol, vol. 24, pp. 1543-8, Jun 2013. [42]P. C. Austin, "Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples," Stat Med, vol. 28, pp. 3083-107, Nov 10 2009. [43]P. J. Chao, H. F. Lee, J. H. Lan, S. S. Guo, H. M. Ting, Y. J. Huang, et al., "Propensity-score-matched evaluation of the incidence of radiation pneumonitis and secondary cancer risk for breast cancer patients treated with IMRT/VMAT," Sci Rep, vol. 7, pp. 13771, Oct 23 2017. [44]W. Zhu, F. Hu, T. Zhao, C. Wang, and Q. Tao, "Clinical Characteristics of Radiation-Induced Sarcoma of the Head and Neck: Review of 15 Cases and 323 Cases in the Literature," J Oral Maxillofac Surg, vol. 74, pp. 283-91, Feb 2016. [45]B. E. Pollock, M. J. Link, S. L. Stafford, I. F. Parney, Y. I. Garces, and R. L. Foote, "The Risk of Radiation-Induced Tumors or Malignant Transformation After Single-Fraction Intracranial Radiosurgery: Results Based on a 25-Year Experience," Int J Radiat Oncol Biol Phys, vol. 97, pp. 919-923, Apr 1 2017. [46]Z. Wei, Y. Xie, J. Xu, Y. Luo, F. Chen, Y. Yang, et al., "Radiation-induced sarcoma of head and neck: 50 years of experience at a single institution in an endemic area of nasopharyngeal carcinoma in China," Med Oncol, vol. 29, pp. 670-6, Jun 2012. [47]C. C. Wang, M. L. Chen, K. H. Hsu, S. P. Lee, T. C. Chen, Y. S. Chang, et al., "Second malignant tumors in patients with nasopharyngeal carcinoma and their association with Epstein‐Barr virus," International journal of cancer, vol. 87, pp. 228-231, 2000. [48]M. Stovall, S. A. Smith, B. M. Langholz, J. D. Boice, Jr., R. E. Shore, M. Andersson, et al., "Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study," Int J Radiat Oncol Biol Phys, vol. 72, pp. 1021-30, Nov 15 2008. [49]P. Q. Cai, Y. P. Wu, L. Li, R. Zhang, C. M. Xie, P. H. Wu, et al., "CT and MRI of radiation-induced sarcomas of the head and neck following radiotherapy for nasopharyngeal carcinoma," Clin Radiol, vol. 68, pp. 683-9, Jul 2013. [50]J. Y. Chan, S. T. Wong, G. I. Lau, and W. I. Wei, "Postradiation sarcoma after radiotherapy for nasopharyngeal carcinoma," Laryngoscope, vol. 122, pp. 2695-9, Dec 2012. [51]M. Mazonakis and J. Damilakis, "Cancer risk after radiotherapy for benign diseases," Phys Med, vol. 42, pp. 285-291, Oct 2017. [52]H. Fuji, U. Schneider, Y. Ishida, M. Konno, H. Yamashita, Y. Kase, et al., "Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas," Radiat Oncol, vol. 8, pp. 255, 2013. [53]M. Mazonakis, C. Varveris, E. Lyraraki, and J. Damilakis, "Radiotherapy for stage I seminoma of the testis: Organ equivalent dose to partially in-field structures and second cancer risk estimates on the basis of a mechanistic, bell-shaped, and plateau model," Med Phys, vol. 42, pp. 6309-16, Nov 2015. [54]T. F. Lee, H. M. Ting, P. J. Chao, and F. M. Fang, "Dual arc volumetric-modulated arc radiotherapy (VMAT) of nasopharyngeal carcinomas: a simultaneous integrated boost treatment plan comparison with intensity-modulated radiotherapies and single arc VMAT," Clin Oncol (R Coll Radiol), vol. 24, pp. 196-207, Apr 2012. [55]X. G. Xu, B. Bednarz, and H. Paganetti, "A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction," Phys Med Biol, vol. 53, pp. R193-241, Jul 07 2008. [56]O. Ardenfors, D. Josefsson, and A. Dasu, "Are IMRT treatments in the head and neck region increasing the risk of secondary cancers?," Acta Oncol, vol. 53, pp. 1041-7, Aug 2014. [57]D. W. Kim, K. Chung, W. K. Chung, S. H. Bae, D. O. Shin, S. Hong, et al., "Risk of secondary cancers from scattered radiation during intensity-modulated radiotherapies for hepatocellular carcinoma," Radiat Oncol, vol. 9, pp. 109, May 08 2014. [58]M. Moteabbed, T. I. Yock, and H. Paganetti, "The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors," Phys Med Biol, vol. 59, pp. 2883-99, Jun 21 2014. [59]U. Schneider, "Modeling the risk of secondary malignancies after radiotherapy," Genes (Basel), vol. 2, pp. 1033-49, 2011. [60]U. Schneider and B. Kaser-Hotz, "Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships," Radiat Environ Biophys, vol. 44, pp. 235-9, Dec 2005. [61]P. R. Rosenbaum and D. B. Rubin, "Constructing a control group using multivariate matched sampling methods that incorporate the propensity score," The American Statistician, vol. 39, pp. 33-38, 1985. [62]P. R. Rosenbaum and D. B. Rubin, "The central role of the propensity score in observational studies for causal effects," Biometrika, vol. 70, pp. 41-55, 1983. [63]P. Zhao, X. Su, T. Ge, and J. Fan, "Propensity score and proximity matching using random forest," Contemporary clinical trials, vol. 47, pp. 85-92, 2016. [64]P. C. Austin, "The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments," Stat Med, vol. 33, pp. 1242-58, Mar 30 2014. [65]E. Gayat, R. Pirracchio, M. Resche-Rigon, A. Mebazaa, J. Y. Mary, and R. Porcher, "Propensity scores in intensive care and anaesthesiology literature: a systematic review," Intensive Care Med, vol. 36, pp. 1993-2003, Dec 2010. [66]T. Pham, A. Combes, H. Roze, S. Chevret, A. Mercat, A. Roch, et al., "Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis," Am J Respir Crit Care Med, vol. 187, pp. 276-85, Feb 1 2013. [67]T. F. Lee, P. J. Chao, L. Chang, H. M. Ting, and Y. J. Huang, "Developing Multivariable Normal Tissue Complication Probability Model to Predict the Incidence of Symptomatic Radiation Pneumonitis among Breast Cancer Patients," PLoS One, vol. 10, pp. e0131736, 2015. [68]G. Intensity Modulated Radiation Therapy Collaborative Working, "Intensity-modulated radiotherapy: current status and issues of interest," Int J Radiat Oncol Biol Phys, vol. 51, pp. 880-914, Nov 15 2001. [69]S. Webb, Intensity-modulated radiation therapy: CRC Press, 2015. [70]B. Hårdemark, A. Liander, H. Rehbinder, J. Löf, and D. Robinson, "P3IMRT," Direct machine parameter optimisation Pinnacle white paper, pp. 983. [71]J. L. Bedford and A. P. Warrington, "Commissioning of volumetric modulated arc therapy (VMAT)," Int J Radiat Oncol Biol Phys, vol. 73, pp. 537-45, Feb 1 2009. [72]T. F. Lee and F. M. Fang, "Quantitative analysis of normal tissue effects in the clinic (QUANTEC) guideline validation using quality of life questionnaire datasets for parotid gland constraints to avoid causing xerostomia during head-and-neck radiotherapy," Radiother Oncol, vol. 106, pp. 352-8, Mar 2013. [73]N. Lee, J. Harris, A. S. Garden, W. Straube, B. Glisson, P. Xia, et al., "Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225," Journal of Clinical Oncology, vol. 27, pp. 3684-3690, 2009. [74]P. F. Tsai, S. M. Lin, S. H. Lee, C. Y. Yeh, Y. T. Huang, C. C. Lee, et al., "The feasibility study of using multiple partial volumetric-modulated arcs therapy in early stage left-sided breast cancer patients," J Appl Clin Med Phys, vol. 13, pp. 3806, Sep 6 2012. [75]K. Rycaj and D. G. Tang, "Cancer stem cells and radioresistance," Int J Radiat Biol, vol. 90, pp. 615-21, Aug 2014. [76]U. Schneider, M. Sumila, and J. Robotka, "Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy," Theor Biol Med Model, vol. 8, pp. 27, 2011. [77]U. Schneider, D. Zwahlen, D. Ross, and B. Kaser-Hotz, "Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose," Int J Radiat Oncol Biol Phys, vol. 61, pp. 1510-5, Apr 1 2005. [78]M. Yoon, D. H. Shin, J. Kim, J. W. Kim, D. W. Kim, S. Y. Park, et al., "Craniospinal irradiation techniques: a dosimetric comparison of proton beams with standard and advanced photon radiotherapy," Int J Radiat Oncol Biol Phys, vol. 81, pp. 637-46, Nov 01 2011. [79]A. M. Kellerer, E. A. Nekolla, and L. Walsh, "On the conversion of solid cancer excess relative risk into lifetime attributable risk," Radiat Environ Biophys, vol. 40, pp. 249-57, Dec 2001. [80]moi.gov.tw., "Abridged Life Table In Taiwan," 2014. [81]P. C. Austin, "A Tutorial and Case Study in Propensity Score Analysis: An Application to Estimating the Effect of In-Hospital Smoking Cessation Counseling on Mortality," Multivariate Behav Res, vol. 46, pp. 119-151, 2011. [82]D. Bartkowiak, N. Humble, P. Suhr, J. Hagg, K. Mair, B. Polivka, et al., "Second cancer after radiotherapy, 1981-2007," Radiother Oncol, vol. 105, pp. 122-6, Oct 2012. [83]S. Myrehaug, G. Chan, T. Craig, V. Weinberg, C. Cheng, M. Roach, 3rd, et al., "A treatment planning and acute toxicity comparison of two pelvic nodal volume delineation techniques and delivery comparison of intensity-modulated radiotherapy versus volumetric modulated arc therapy for hypofractionated high-risk prostate cancer radiotherapy," Int J Radiat Oncol Biol Phys, vol. 82, pp. e657-62, Mar 15 2012. [84]D. Palma, E. Vollans, K. James, S. Nakano, V. Moiseenko, R. Shaffer, et al., "Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy," Int J Radiat Oncol Biol Phys, vol. 72, pp. 996-1001, Nov 15 2008. [85]C. C. Popescu, I. A. Olivotto, W. A. Beckham, W. Ansbacher, S. Zavgorodni, R. Shaffer, et al., "Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes," Int J Radiat Oncol Biol Phys, vol. 76, pp. 287-95, Jan 1 2010. [86]D. Wolff, F. Stieler, G. Welzel, F. Lorenz, Y. Abo-Madyan, S. Mai, et al., "Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer," Radiother Oncol, vol. 93, pp. 226-33, Nov 2009. [87]H. Paganetti, Proton therapy physics: CRC press, 2016. [88]S. L. Hancock and R. T. Hoppe, "Long-Term Complications of Treatment and Causes of Mortality After Hodgkin's Disease," Semin Radiat Oncol, vol. 6, pp. 225-242, Jul 1996. [89]A. J. Swerdlow, J. A. Barber, G. V. Hudson, D. Cunningham, R. K. Gupta, B. W. Hancock, et al., "Risk of second malignancy after Hodgkin's disease in a collaborative British cohort: the relation to age at treatment," J Clin Oncol, vol. 18, pp. 498-509, Feb 2000. [90]F. E. van Leeuwen, W. J. Klokman, M. B. Veer, A. Hagenbeek, A. D. Krol, U. A. Vetter, et al., "Long-term risk of second malignancy in survivors of Hodgkin's disease treated during adolescence or young adulthood," J Clin Oncol, vol. 18, pp. 487-97, Feb 2000. [91]N. Howlader, S. F. Altekruse, C. I. Li, V. W. Chen, C. A. Clarke, L. A. Ries, et al., "US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status," J Natl Cancer Inst, vol. 106, Apr 28 2014. [92]A. T. Meadows, D. L. Friedman, J. P. Neglia, A. C. Mertens, S. S. Donaldson, M. Stovall, et al., "Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort," J Clin Oncol, vol. 27, pp. 2356-62, May 10 2009. [93]H. Paganetti, "Assessment of the risk for developing a second malignancy from scattered and secondary radiation in radiation therapy," Health Phys, vol. 103, pp. 652-61, Nov 2012. [94]U. Schneider and L. Walsh, "Age at exposure and attained age variations of cancer risk in the Japanese A-bomb and radiotherapy cohorts," Med Phys, vol. 42, pp. 4755-61, Aug 2015. [95]M. C. Janelsins, C. E. Heckler, L. J. Peppone, C. Kamen, K. M. Mustian, S. G. Mohile, et al., "Cognitive complaints in survivors of breast cancer after chemotherapy compared with age-matched controls: an analysis from a nationwide, multicenter, prospective longitudinal study," Journal of Clinical Oncology, vol. 35, pp. 506, 2017. [96]A. H. Partridge, M. E. Hughes, E. T. Warner, R. A. Ottesen, Y. N. Wong, S. B. Edge, et al., "Subtype-Dependent Relationship Between Young Age at Diagnosis and Breast Cancer Survival," J Clin Oncol, vol. 34, pp. 3308-14, Sep 20 2016. [97]E. Y. Han, N. Paudel, J. Sung, M. Yoon, W. K. Chung, and D. W. Kim, "Estimation of the risk of secondary malignancy arising from whole-breast irradiation: comparison of five radiotherapy modalities, including TomoHDA," Oncotarget, vol. 7, pp. 22960-9, Apr 19 2016. [98]D. J. Brenner, R. Doll, D. T. Goodhead, E. J. Hall, C. E. Land, J. B. Little, et al., "Cancer risks attributable to low doses of ionizing radiation: assessing what we really know," Proc Natl Acad Sci U S A, vol. 100, pp. 13761-6, Nov 25 2003. [99]L. J. Murray, C. M. Thompson, J. Lilley, V. Cosgrove, K. Franks, D. Sebag-Montefiore, et al., "Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy," Phys Med Biol, vol. 60, pp. 1237-57, Feb 07 2015. [100]H. F. Lee, J. H. Lan, P. J. Chao, H. M. Ting, H. C. Chen, H. C. Hsu, et al., "Radiation-induced secondary malignancies for nasopharyngeal carcinoma: a pilot study of patients treated via IMRT or VMAT," Cancer Manag Res, vol. 10, pp. 131-141, 2018. [101]U. Schneider, "Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula," Med Phys, vol. 36, pp. 1138-43, Apr 2009.
|