|
[1] Q. Ye, M. Chen, W. Cai, Numerically investigating a wide-angle polarization-independent ultra-broadband solar selective absorber for high-efficiency solar thermal energy conversion, Solar Energy 184 (2019) 489-496. [2] L. Wu, H. Zhang, F. Qin, X. Bai, Z. Ji, D. Huang, Performance enhancement of pc-Si solar cells through combination of anti-reflection and light-trapping: Functions of AAO nano-grating, Optics Communications 385 (2017) 205-212. [3] Ľ. Scholtz, P. Šutta, P. Calta, P. Novák, M. Solanská, J. Müllerová, Investigation of barium titanate thin films as simple antireflection coatings for solar cells, Applied Surface Science 461 (2018) 249-254. [4] L. Yao, J. He, Recent progress in antireflection and self-cleaning technology–From surface engineering to functional surfaces, Progress in Materials Science 61 (2014) 94-143. [5] M. Farhat, T.C. Cheng, K.Q. Le, M.M.C. Cheng, H. Bağcı, P.Y. Chen, Mirror-backed dark alumina: a nearly perfect absorber for thermoelectronics and thermophotovotaics, Scientific reports 6 (2016) 19984. [6] C.Y. Lin, K.Y.A. Lin, T.W. Yang, Y.C. Chen, H. Yang, Self-assembled hemispherical nanowell arrays for superhydrophobic antireflection coatings, Journal of colloid and interface science 490 (2017) 174-180. [7] T. Shao, F. Tang, L. Sun, X. Ye, J. He, L. Yang, W. Zheng, Fabrication of antireflective nanostructures on a transmission grating surface using a one-step self-masking method, Nanomaterials 9(2) (2019) 180. [8] H.J. Jeong, Y.C. Kim, S.K. Lee, J.H. Yun, J.H. Jang, Enhanced spectral response of CIGS solar cells with anti-reflective subwavelength structures and quantum dots, Solar Energy Materials and Solar Cells 194 (2019) 177-183. [9] C. Atkinson, C.L. Sansom, H.J. Almond, C.P. Shaw, Coatings for concentrating solar systems–A review, Renewable and Sustainable Energy Reviews 45 (2015) 113-122. [10] B. Li, G. Niu, Y. Yi, X.W. Zhou, X.D. Liu, L.X. Sun, C.Y. Wang, Antireflection subwavelength structures based on silicon nanowires arrays fabricated by metal-assisted chemical etching, Superlattices and Microstructures 111 (2017) 57-64. [11] J.Y. Chen, W.L. Chang, C.K. Huang, K.W. Sun, Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells, Optics express 19(15) (2011) 14411-14419. [12] J. Taniguchi, E. Yamauchi, Y. Nemoto, Fabrication of antireflection structures on glassy carbon surfaces using electron beam lithography and oxygen dry etching, Journal of Physics: Conference Series, IOP Publishing, 2008, p. 012011. [13] C.H. Chang, J.A. Dominguez Caballero, H.J. Choi, G. Barbastathis, Nanostructured gradient-index antireflection diffractive optics, Optics letters 36(12) (2011) 2354-2356. [14] D.B. Dement, M.K. Quan, V.E. Ferry, Nanoscale Patterning of Colloidal Nanocrystal Films for Nanophotonic Applications Using Direct Write Electron Beam Lithography, ACS applied materials & interfaces 11(16) (2019) 14970-14979. [15] D. Kazazis, L.T. Tseng, Y. Ekinci, Achromatic Talbot lithography with nano-ring masks for high-throughput periodic patterning, Microelectronic Engineering 225 (2020) 111273. [16] J. Wu, Z.X. Geng, Y.Y. Xie, Z.Y. Fan, Y. Su, C. Xu, H.D. Chen, The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography, Nanomaterials 9(1) (2019). [17] C. Phiphatanaphiphop, K. Leksakul, R. Phatthanakun, W. Busayaporn, C. Saiyasombat, P. Phothongkam, M.M. Rana, H. Suzuki, Multiwalled Carbon Nanotubes in Microfluidic Chip for the Separation of X-and Y-Sperm Based on a Photolithography Technique, Journal of Microelectromechanical Systems 29(5) (2020) 1264-1277. [18] Y. Yao, L. Zhang, T. Leydecker, P. Samorì, Direct photolithography on molecular crystals for high performance organic optoelectronic devices, Journal of the American Chemical Society 140(22) (2018) 6984-6990. [19] Y.H. Kang, S.S. Oh, Y.S. Kim, C.G. Choi, Fabrication of antireflection nanostructures by hybrid nano-patterning lithography, Microelectronic Engineering 87(2) (2010) 125-128. [20] X. Wang, M. Sperling, M. Reifarth, A. Böker, Shaping Metallic Nanolattices: Design by Microcontact Printing from Wrinkled Stamps, Small 16(11) (2020) 1906721. [21] S.K.H. Lam, A. Bendavid, J. Du, Trimming the electrical properties on nanoscale YBa2Cu3O7− x constrictions by focus ion beam technique, Physica C: Superconductivity and its Applications 540 (2017) 38-43. [22] A. Kannegulla, L.J. Cheng, Metal assisted focused-ion beam nanopatterning, Nanotechnology 27(36) (2016) 36LT01. [23] Z. Li, C. Lu, A.B. Prakoso, M. Foldyna, R. Khoury, P. Bulkin, J. Wang, W. Chen, E. Johnson, P.I.R. Cabarrocas, Optical study and experimental realization of nanostructured back reflectors with reduced parasitic losses for silicon thin film solar cells, Nanomaterials 8(8) (2018) 626. [24] Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, H. Duan, Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching, Nanotechnology 27(36) (2016) 365302. [25] S. Samavedi, A.R. Whittington, A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior, Acta Biomaterialia 9(9) (2013) 8037-8045. [26] M. Mhaede, F. Pastorek, B. Hadzima, Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD), Materials Science and Engineering: C 39 (2014) 330-335. [27] X. Miao, Y. Hu, J. Liu, A.P. Wong, Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements, Materials Letters 58(3) (2004) 397-402. [28] D.T. Montoro, D.C. Wan, M.T. Longaker, Chapter 60 - Skeletal Tissue Engineering, in: R. Lanza, R. Langer, J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition), Academic Press, Boston, 2014, pp. 1289-1302. [29] P. Ducheyne, S. Radin, M. Heughebaert, J.C. Heughebaert, Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution, Biomaterials 11(4) (1990) 244-254. [30] V.T. Nguyen, T.C. Cheng, T.H. Fang, M.H. Li, The fabrication and characteristics of hydroxyapatite film grown on titanium alloy Ti-6Al-4V by anodic treatment, Journal of Materials Research and Technology 9(3) (2020) 4817-4825. [31] C.M. Cotrut, A. Vladescu, M. Dinu, D.M. Vranceanu, Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition, Ceramics International 44(1) (2018) 669-677. [32] O. Blind, L.H. Klein, B. Dailey, L. Jordan, Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates, Dental Materials 21(11) (2005) 1017-1024. [33] G.P. Dinda, J. Shin, J. Mazumder, Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: effect of heat treatment on structure and properties, Acta biomaterialia 5(5) (2009) 1821-1830. [34] S.F. Robertson, A. Bandyopadhyay, S. Bose, Titania nanotube interface to increase adhesion strength of hydroxyapatite sol-gel coatings on Ti-6Al-4V for orthopedic applications, Surface and Coatings Technology 372 (2019) 140-147. [35] R. Drevet, N.B. Jaber, J. Fauré, A. Tara, A.B.C. Larbi, H. Benhayoune, Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates, Surface and Coatings Technology 301 (2016) 94-99. [36] V.O. Kollath, Q. Chen, S. Mullens, J. Luyten, K. Traina, A.R. Boccaccini, R. Cloots, Electrophoretic deposition of hydroxyapatite and hydroxyapatite–alginate on rapid prototyped 3D Ti6Al4V scaffolds, Journal of materials science 51(5) (2016) 2338-2346. [37] R. Kumari, J.D. Majumdar, Microstructure and surface mechanical properties of plasma spray deposited and post spray heat treated hydroxyapatite (HA) based composite coating on titanium alloy (Ti-6Al-4V) substrate, Materials Characterization 131 (2017) 12-20. [38] D.H. He, P. Wang, P. Liu, X.K. Liu, F.C. Ma, J. Zhao, HA coating fabricated by electrochemical deposition on modified Ti6Al4V alloy, Surface and Coatings Technology 301 (2016) 6-12. [39] L. Benea, E. Mardare Danaila, M. Mardare, J.P. Celis, Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution, Corrosion Science 80 (2014) 331-338. [40] L.C. Zhang, L.Y. Chen, L. Wang, Surface modification of titanium and titanium alloys: technologies, developments, and future interests, Advanced Engineering Materials 22(5) (2020) 1901258. [41] D. Lakstein, W. Kopelovitch, Z. Barkay, M. Bahaa, D. Hendel, N. Eliaz, Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti–6Al–4V implants in rabbits, Acta Biomaterialia 5(6) (2009) 2258-2269. [42] N.N.C. Isa, Y. Mohd, N. Yury, Electrochemical deposition and characterization of hydroxyapatite (HAp) on titanium substrate, APCBEE Procedia 3 (2012) 46-52. [43] K. Lee, H.C. Choe, Effects of Electrolyte Concentration on Formation of Calcium Phosphate Films on Ti–6Al–4V by Electrochemical Deposition, Journal of nanoscience and nanotechnology 17(4) (2017) 2743-2746. [44] T.M.T. Dinh, T.T. Nguyen, T.N. Pham, T.P. Nguyen, T.T.T. Nguyen, T. Hoang, D. Grossin, G. Bertrand, C. Drouet, Electrodeposition of HAp coatings on Ti6Al4V alloy and its electrochemical behavior in simulated body fluid solution, Advances in Natural Sciences: Nanoscience and Nanotechnology 7(2) (2016) 025008. [45] J. Brzezińska Miecznik, P. Jeleń, K. Haberko, W. Mozgawa, M. Sitarz, The effect of NaOH and KOH treatment on the behavior of CO32-and OH-groups in natural origin hydroxyapatite, Ceramics International 43(15) (2017) 12540-12545. [46] P. Strąkowska, R. Beutner, M. Gnyba, A. Zielinski, D. Scharnweber, Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films—Coating characterization and first cell biological results, Materials Science and Engineering: C 59 (2016) 624-635. [47] T.T. Li, L. Ling, M.C. Lin, H.K. Peng, H.T. Ren, C.W. Lou, J.H. Lin, Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition, Journal of Materials Science (2020) 1-23. [48] D. Gopi, J. Indira, L. Kavitha, A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel, Surface and Coatings Technology 206(11-12) (2012) 2859-2869. [49] R. Drevet, O. Aaboubi, H. Benhayoune, In vitro corrosion behavior of electrodeposited calcium phosphate coatings on Ti6Al4V substrates, Journal of Solid State Electrochemistry 16(9) (2012) 3069-3077. [50] L. Ling, T.T. Li, M.C. Lin, Q. Jiang, H.T. Ren, C.W. Lou, J.H. Lin, Effect of hydrogen peroxide concentration on the nanostructure of hydroxyapatite coatings via ultrasonic-assisted electrodeposition, Materials Letters 261 (2020) 126989. [51] L.Y. Huang, K.W. Xu, J. Lu, A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings, Journal of Materials Science: Materials in Medicine 11(11) (2000) 667-673. [52] N. Dumelié, H. Benhayoune, C. Rousse Bertrand, S. Bouthors, A. Perchet, L. Wortham, J. Douglade, D. Laurent Maquin, G. Balossier, Characterization of electrodeposited calcium phosphate coatings by complementary scanning electron microscopy and scanning-transmission electron microscopy associated to X-ray microanalysis, Thin Solid Films 492(1-2) (2005) 131-139. [53] M.C. Kuo, S.K. Yen, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature, Materials Science and Engineering: C 20(1-2) (2002) 153-160. [54] M.D. Maksimović, V.B. Mišković-Stanković, N.V. Krstajić, The effect of applied voltage on the cathodic electrodeposition process, Surface and Coatings Technology 27(1) (1986) 89-94. [55] N. Eliaz, T.M. Sridhar, U. Kamachi Mudali, B. Raj, Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications, Surface Engineering 21(3) (2005) 238-242. [56] X. Ma, C. Blawert, D. Höche, K.U. Kainer, M.L. Zheludkevich, A model describing the growth of a PEO coating on AM50 Mg alloy under constant voltage mode, Electrochimica Acta 251 (2017) 461-474. [57] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G.E. Thompson, Characterization of AC PEO coatings on magnesium alloys, Surface and Coatings Technology 203(16) (2009) 2207-2220. [58] A. Mahapatro, S.K. Suggu, Modeling and simulation of electrodeposition: Effect of electrolyte current density and conductivity on electroplating thickness, Adv. Mater. Sci 3(2) (2018) 1. [59] J. Song, J. She, D. Chen, F. Pan, Latest research advances on magnesium and magnesium alloys worldwide, Journal of Magnesium and Alloys (2020). [60] M. Ostapiuk, Corrosion resistance of PEO and primer coatings on magnesium alloy, Journal of Asian Ceramic Societies (2020) 1-13. [61] T. Xu, Y. Yang, X. Peng, J. Song, F. Pan, Overview of advancement and development trend on magnesium alloy, Journal of Magnesium and Alloys 7(3) (2019) 536-544. [62] A. Kula, T. Tokarski, M. Niewczas, Comparative studies on the structure and properties of rapidly solidified and conventionally cast AM60 magnesium alloys, Materials Science and Engineering A 759 (2019) 346-356. [63] H.L. Huang, W.L. Yang, Corrosion behavior of AZ91D magnesium alloy in distilled water, Arabian Journal of Chemistry 13(7) (2020) 6044-6055. [64] D. Han, J. Zhang, J.F. Huang, Y. Lian, G.Y. He, A review on ignition mechanisms and characteristics of magnesium alloys, Journal of Magnesium and Alloys (2020). [65] M.A. Hafeez, A. Farooq, A. Zang, A. Saleem, K.M. Deen, Phosphate chemical conversion coatings for magnesium alloys: a review, Journal of Coatings Technology and Research 17(4) (2020) 827-849. [66] F. Cao, G.L. Song, A. Atrens, Corrosion and passivation of magnesium alloys, Corrosion Science 111 (2016) 835-845. [67] H.W. Huo, Y. Li, F.H. Wang, Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer, Corrosion Science 46(6) (2004) 1467-1477. [68] X. Zhang, W. Han, D. Fan, Y. Zheng, Electroless iron plating on pure magnesium for biomedical applications, Materials Letters 130 (2014) 154-156. [69] H. Ashassi Sorkhabi, S. Moradi Alavian, M.D. Esrafili, A. Kazempour, Hybrid sol-gel coatings based on silanes-amino acids for corrosion protection of AZ91 magnesium alloy: electrochemical and DFT insights, Progress in Organic Coatings 131 (2019) 191-202. [70] F. Liang, Y. Shen, C. Pei, B. Qiu, J. Lei, D. Sun, Microstructure evolution and corrosion resistance of multi interfaces Al-TiAlN nanocomposite films on AZ91D magnesium alloy, Surface and Coatings Technology 357 (2019) 83-92. [71] Z.U. Rahman, K.M. Deen, W. Haider, Controlling corrosion kinetics of magnesium alloys by electrochemical anodization and investigation of film mechanical properties, Applied Surface Science 484 (2019) 906-916. [72] W. Yang, D. Xu, J. Wang, X. Yao, J. Chen, Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy, Corrosion Science 136 (2018) 174-179. [73] X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M.L. Zheludkevich, Plasma electrolytic oxidation coatings with particle additions–A review, Surface and Coatings Technology 307 (2016) 1165-1182. [74] D. Liu, Y. Li, Y. Zhou, Y. Ding, The preparation, characterization and formation mechanism of a calcium phosphate conversion coating on magnesium alloy AZ91D, Materials 11(6) (2018) 908. [75] M.B. Kannan, Hydroxyapatite coating on biodegradable magnesium and magnesium-based alloys, in: M.R. Mucalo (Ed.), Hydroxyapatite (HAp) for Biomedical Applications, Woodhead Publishing2015, pp. 289-306. [76] Y. Shangguan, P. Wan, L. Tan, X. Fan, L. Qin, K. Yang, Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior, Journal of colloid and interface science 481 (2016) 1-12. [77] Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, Y.F. Zheng, Advances in coatings on biodegradable magnesium alloys, Journal of Magnesium and Alloys 8(1) (2020) 42-65. [78] B. Liu, X. Zhang, G.Y. Xiao, Y.P. Lu, Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review, Materials Science and Engineering C 47 (2015) 97-104. [79] H. Hornberger, S. Virtanen, A.R. Boccaccini, Biomedical coatings on magnesium alloys–a review, Acta biomaterialia 8(7) (2012) 2442-2455. [80] I. Milošev, G.S. Frankel, Review—conversion coatings based on zirconium and/or titanium, Journal of The Electrochemical Society 165(3) (2018) C127-C144. [81] X.B. Chen, X. Zhou, T.B. Abbott, M.A. Easton, N. Birbilis, Double-layered manganese phosphate conversion coating on magnesium alloy AZ91D: Insights into coating formation, growth and corrosion resistance, Surface and Coatings Technology 217 (2013) 147-155. [82] S. Pommiers, J. Frayret, A. Castetbon, M. Potin-Gautier, Alternative conversion coatings to chromate for the protection of magnesium alloys, Corrosion Science 84 (2014) 135-146. [83] C.M. Wang, H.C. Liau, W.T. Tsai, Effects of temperature and applied potential on the microstructure and electrochemical behavior of manganese phosphate coating, Surface and Coatings Technology 201(6) (2006) 2994-3001. [84] W.Q. Zhou, W. Tang, Q. Zhao, S.W. Wu, E.H. Han, Influence of Additive on Structure and Corrosion Resistance of Manganese Phosphate Film on AZ91 Magnesium Alloy, Materials Science Forum 686 (2011) 176-180. [85] C. Zhang, B. Liu, B. Yu, X. Lu, Y. Wei, T. Zhang, J.M.C. Mol, F. Wang, Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy, Surface and Coatings Technology 359 (2019) 414-425. [86] L.H. Fu, C.F. Dong, X.G. Li, W. Han, Electrochemical behaviors of magnesium alloy with phosphate conversion coating in NaCl solutions, Rare Metals 35(10) (2016) 747-757. [87] J. Zhang, H. Li, Influence of manganese phosphating on wear resistance of steel piston material under boundary lubrication condition, Surface and Coatings Technology 304 (2016) 530-536. [88] X.J. Cui, C.H. Liu, R.S. Yang, Q.S. Fu, X.Z. Lin, M. Gong, Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism, Corrosion Science 76 (2013) 474-485. [89] R.J. Hrr, J.B. Jones, The crystal structure of hopeite, American Mineralogist 61 (1976) 987-995. [90] P.B. Moore, T. Araki, Hureaulite, Mn52+ (H2O)4[PO3(OH)]2[PO]4]2: Its atomic arrangement, American Mineralogist 58(3-4_Part_1) (1973) 302-307. [91] D. Ernens, M.B. de Rooij, H.R. Pasaribu, E.J. van Riet, W.M. van Haaften, D.J. Schipper, Mechanical characterization and single asperity scratch behaviour of dry zinc and manganese phosphate coatings, Tribology International 118 (2018) 474-483. [92] W. Rausch, The phosphating of metals, Finishing Publications Ltd.(UK), London, 1990. [93] M. Khaleghi, D.R. Gabe, M.O.W. Richardson, Characteristics of manganese phosphate coatings for wear- resistance applications, Wear 55(2) (1979) 277-287. [94] D. Weng, P. Jokiel, A. Uebleis, H. Boehni, Corrosion and protection characteristics of zinc and manganese phosphate coatings, Surface and Coatings Technology 88(1) (1997) 147-156. [95] G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, Q. Jiang, Growth of zinc phosphate coatings on AZ91D magnesium alloy, Surface and Coatings Technology 201(3) (2006) 1814-1820. [96] Q. Li, S.Q. Xu, J.Y. Hu, S.Y. Zhang, X.K. Zhong, X.K. Yang, The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D, Electrochimica Acta 55(3) (2010) 887-894. [97] X. Sun, D. Susac, R. Li, K.C. Wong, T. Foster, K.A.R. Mitchell, Some observations for effects of copper on zinc phosphate conversion coatings on aluminum surfaces, Surface and Coatings Technology 155(1) (2002) 46-50. [98] L.Y. Niu, J.X. Lin, Y. Li, Z.M. Shi, L.C. Xu, Improvement of anticorrosion and adhesion to magnesium alloy by phosphate coating formed at room temperature, Transactions of Nonferrous Metals Society of China 20(7) (2010) 1356-1360. [99] G. Wang, N. Cao, Y. Wang, Characteristics and corrosion studies of zinc–manganese phosphate coatings on magnesium–lithium alloy, RSC Advances 4(104) (2014) 59772-59778. [100] L. Kouisni, M. Azzi, F. Dalard, S. Maximovitch, Phosphate coatings on magnesium alloy AM60: Part 2: Electrochemical behaviour in borate buffer solution, Surface and Coatings Technology 192(2) (2005) 239-246. [101] L. Zaraska, G.D. Sulka, J. Szeremeta, M. Jaskuła, Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum, Electrochimica Acta 55(14) (2010) 4377-4386. [102] N. Wang, Y. Zhu, W. Wei, J. Chen, P. Li, Y. Wen, Conversion efficiency enhanced photovoltaic device with nanohole arrays in antireflection coating layer, Optics Communications 284(19) (2011) 4773-4777. [103] J. Son, L.K. Verma, A.J. Danner, C.S. Bhatia, H. Yang, Enhancement of optical transmission with random nanohole structures, Optics Express 19(101) (2011) A35-A40. [104] R. Drevet, H. Benhayoune, L. Wortham, S. Potiron, J. Douglade, D. Laurent Maquin, Effects of pulsed current and H2O2 amount on the composition of electrodeposited calcium phosphate coatings, Materials Characterization 61(8) (2010) 786-795. [105] R. Drevet, F. Velard, S. Potiron, D. Laurent Maquin, H. Benhayoune, In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate, Journal of Materials Science: Materials in Medicine 22(4) (2011) 753-761. [106] J.M. Zhang, C.J. Lin, Z.D. Feng, Z.W. Tian, Mechanistic studies of electrodeposition for bioceramic coatings of calcium phosphates by an in situ pH-microsensor technique, Journal of Electroanalytical Chemistry 452(2) (1998) 235-240. [107] K.H. Park, S.J. Kim, M.J. Hwang, H.J. Song, Y.J. Park, Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant, Colloid and Polymer Science 295(10) (2017) 1843-1849. [108] S.H. Wang, W.J. Shih, W.L. Li, M.H. Hon, M.C. Wang, Morphology of calcium phosphate coatings deposited on a Ti–6Al–4V substrate by an electrolytic method under 80Torr, Journal of the European Ceramic Society 25(14) (2005) 3287-3292. [109] V. Huynh, N.K. Ngo, T.D. Golden, Surface Activation and Pretreatments for Biocompatible Metals and Alloys Used in Biomedical Applications, International Journal of Biomaterials 2019 (2019) 3806504. [110] D. Gopi, S. Ramya, D. Rajeswari, L. Kavitha, Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel, Colloids and Surfaces B: Biointerfaces 107 (2013) 130-136. [111] S.N. Ab Malek, Y. Mohd, Effect of Deposition Potential on the Structure, Electrocatalytic Activity and Stability of Pt Films for Methanol Oxidation, Int. J. Electrochem. Sci 12 (2017) 1561-1571. [112] M.S. Djošić, V.B. Mišković Stanković, Z.M. Kačarević Popović, B.M. Jokić, N. Bibić, M. Mitrić, S.K. Milonjić, R. Jančić Heinemann, J. Stojanović, Electrochemical synthesis of nanosized monetite powder and its electrophoretic deposition on titanium, Colloids and Surfaces A: Physicochemical and Engineering Aspects 341(1-3) (2009) 110-117. [113] Y. Feng, K.D. Kim, C.A. Nemitz, P. Kim, T. Pfadler, M. Gerigk, S. Polarz, J.A. Dorman, J. Weickert, L. Schmidt Mende, Uniform large-area free-standing silver nanowire arrays on transparent conducting substrates, Journal of The Electrochemical Society 163(8) (2016) D447. [114] C. Ungureanu, C. Pirvu, M. Mindroiu, I. Demetrescu, Antibacterial polymeric coating based on polypyrrole and polyethylene glycol on a new alloy TiAlZr, Progress in Organic Coatings 75(4) (2012) 349-355. [115] L. Aries, Preparation of electrolytic ceramic films on stainless steel conversion coatings, Journal of applied electrochemistry 24(6) (1994) 554-558. [116] M.S. Djošić, V.B. Mišković Stanković, D.T. Janaćković, Z.M. Kačarević Popović, R.D. Petrović, Electrophoretic deposition and characterization of boehmite coatings on titanium substrate, Colloids and Surfaces A: Physicochemical and Engineering Aspects 274(1) (2006) 185-191. [117] B. Čolović, V. Jokanović, B. Jokanović, N. Jović, Biomimetic deposition of hydroxyapatite on the surface of silica thin film covered steel tape, Ceramics International 40(5) (2014) 6949-6955. [118] J.W. Huang, X.M. Fan, D.S. Xiong, J.L. Li, H.G. Zhu, M. Huang, Characterization and one-step synthesis of Hydroxyapatite-Ti (C, N)-TiO2 composite coating by cathodic plasma electrolytic saturation and accompanying electrochemical deposition on titanium alloy, Surface and Coatings Technology 324 (2017) 463-470. [119] E.V. Pecheva, L.D. Pramatarova, M.F. Maitz, M.T. Pham, A.V. Kondyuirin, Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions: Part I. FTIR and Raman spectroscopy study, Applied surface science 235(1-2) (2004) 176-181. [120] A. Hadrich, A. Lautie, T. Mhiri, Vibrational study of structural phase transitions in (NH4) 2HPO4 and (ND4) 2DPO4, Journal of Raman Spectroscopy 31(7) (2000) 587-593. [121] H.B. Lu, C.T. Campbell, D.J. Graham, B.D. Ratner, Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS, Analytical chemistry 72(13) (2000) 2886-2894. [122] G. Bharath, B.S. Latha, E.H. Alsharaeh, P. Prakash, N. Ponpandian, Enhanced hydroxyapatite nanorods formation on graphene oxide nanocomposite as a potential candidate for protein adsorption, pH controlled release and an effective drug delivery platform for cancer therapy, Analytical Methods 9(2) (2017) 240-252. [123] M.A. Surmeneva, R.A. Surmenev, A.I. Tyurin, T.M. Mukhametkaliyev, A.D. Teresov, N.N. Koval, T.S. Pirozhkova, I.A. Shuvarin, C. Oehr, Comparative study of the radio-frequency magnetron sputter deposited CaP films fabricated onto acid-etched or pulsed electron beam-treated titanium, Thin Solid Films 571 (2014) 218-224. [124] J.A. Syed, S. Tang, X. Meng, Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application, Scientific reports 7(1) (2017) 1-17. [125] G. Singh, B.S. Sidhu, Investigation of the in vitro corrosion behavior and biocompatibility of niobium (Nb)-reinforced hydroxyapatite (HA) coating on CoCr alloy for medical implants, Journal of Materials Research 34(10) (2019) 1678-1691. [126] M. Sharma, R. Nagar, V.K. Meena, S. Singh, Electro-deposition of bactericidal and corrosion-resistant hydroxyapatite nanoslabs, RSC advances 9(20) (2019) 11170-11178. [127] C. Anandan, L. Mohan, In vitro corrosion behavior and apatite growth of oxygen plasma ion implanted titanium alloy β-21S, Journal of materials engineering and performance 22(11) (2013) 3507-3516. [128] S.L.d. Assis, S. Wolynec, I. Costa, Corrosion characterization of titanium alloys by electrochemical techniques, Electrochimica Acta 51(8) (2006) 1815-1819. [129] R. Chakraborty, P. Saha, A comparative study on surface morphology and electrochemical behaviour of hydroxyapatite-calcium hydrogen phosphate composite coating synthesized in-situ through electro chemical process under various deposition conditions, Surfaces and Interfaces 12 (2018) 160-167. [130] N.J. Coleman, J.W. Nicholson, K. Awosanya, A preliminary investigation of the in vitro bioactivity of white Portland cement, Cement and Concrete Research 37(11) (2007) 1518-1523. [131] A. Vladescu, D.M. Vranceanu, S. Kulesza, A.N. Ivanov, M. Bramowicz, A.S. Fedonnikov, M. Braic, I.A. Norkin, A. Koptyug, M.O. Kurtukova, Influence of the electrolyte’s pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy, 7(1) (2017) 16819. [132] A. Büyüksağiş, Y. Kayalı, M.B. Dergisi, Investigation of corrosion behaviours hydroxyapatite (hap) coated ti6al4v implants by using electrochemical deposition method, 18(3) (2018) 807-819. [133] J. Gao, H. Liu, C. Tong, L.Y. Pang, Y.Q. Feng, M.G. Zuo, Z.Q. Wei, J.Q. Li, Hemoglobin-Mn3(PO4)2 hybrid nanoflower with opulent electroactive centers for high-performance hydrogen peroxide electrochemical biosensor, Sensors and Actuators B: Chemical 307 (2020) 127628. [134] Y. Zhou, J. Xiong, F. Yan, The preparation and characterization of a nano-CeO2/phosphate composite coating on magnesium alloy AZ91D, Surface and Coatings Technology 328 (2017) 335-343. [135] H. Luo, C.F. Dong, X.G. Li, K. Xiao, The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride, Electrochimica Acta 64 (2012) 211-220. [136] E. Saei, B. Ramezanzadeh, R. Amini, M.S. Kalajahi, Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies, Corrosion Science 127 (2017) 186-200. [137] Y. Wang, J. Hao, W. Li, X. Zuo, B. Xiang, Y. Qiang, X. Zou, B. Tan, Q. Hu, F. Chen, Mn3O4/Co(OH)2 cactus-type nanoarrays for high-energy-density asymmetric supercapacitors, Journal of Materials Science 55(2) (2020) 724-737. [138] J. Yuan, R. Yuan, J. Wang, Q. Li, X. Xing, X. Liu, W. Hu, Fabrication and corrosion resistance of phosphate/ZnO multilayer protective coating on magnesium alloy, Surface and Coatings Technology 352 (2018) 74-83. [139] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS Data, Perkin-Elmer Corporation, Physical Electronics, Eden Prairie, Minnesota, USA, 1992. [140] Y. Song, D. Shan, R. Chen, F. Zhang, E.H. Han, Formation mechanism of phosphate conversion film on Mg–8.8Li alloy, Corrosion Science 51(1) (2009) 62-69. [141] Z. Zhang, G. Yu, Y. Ouyang, X. He, B. Hu, J. Zhang, Z. Wu, Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D, Applied Surface Science 255(17) (2009) 7773-7779. [142] L.Y. Niu, Z.H. Jiang, G.Y. Li, C.D. Gu, J.S. Lian, A study and application of zinc phosphate coating on AZ91D magnesium alloy, Surface and Coatings Technology 200(9) (2006) 3021-3026. [143] D.J. Wesolowski, P. Bénézeth, D.A. Palmer, ZnO Solubility and Zn2 Complexation by Chloride and Sulfate in Acidic Solutions to 290°C with In-Situ pH Measurement, Geochimica et Cosmochimica Acta 62(6) (1998) 971-984. [144] J.S. Lian, G.Y. Li, L.Y. Niu, C.D. Gu, Z.H. Jiang, Q. Jiang, Electroless Ni–P deposition plus zinc phosphate coating on AZ91D magnesium alloy, Surface and Coatings Technology 200(20) (2006) 5956-5962. [145] W. Zhou, D. Shan, E.H. Han, W. Ke, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy, Corrosion Science 50(2) (2008) 329-337. [146] K. Kakaei, M.D. Esrafili, A. Ehsani, Chapter 8 - Graphene and Anticorrosive Properties, in: K. Kakaei, M.D. Esrafili, A. Ehsani (Eds.), Interface Science and Technology, Elsevier2019, pp. 303-337. [147] G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, H. Dong, Effect of zinc–phosphate–molybdate conversion precoating on performance of cathode epoxy electrocoat on AZ91D alloy, 23(1) (2007) 56-61. [148] F. El-Taib Heakal, A.M. Fekry, M. Abd El-Barr Jibril, Electrochemical behaviour of the Mg alloy AZ91D in borate solutions, Corrosion Science 53(4) (2011) 1174-1185. [149] R. Maurya, A.R. Siddiqui, K. Balani, An environment-friendly phosphate chemical conversion coating on novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys with remarkable corrosion protection, Applied Surface Science 443 (2018) 429-440.
|