[1]Frank M. Wanlass, “Low stand-by power complementary field effect circuitry,” U.S. Patent 3356858, Dec. 5, 1967
[2]C. S. Taillefer, et al., “Delta–Sigma A/D conversion via time-mode signal processing” IEEE Trans. Circuits Syst. I, vol. 56, no. 9, pp. 1908–1920, Sep. 2009.
[3]Gordon W., et al., “A Brief Introduction to Time-to-Digital and Digital-to-Time Converters,” IEEE Trans. Circuits Syst. II, vol. 57, no. 3, pp. 153–157, Mar. 2010.
[4]P. Chen, et al., “FPGA Vernier Digital-to-Time Converter With 1.58 ps Resolution and 59.3 Minutes Operation Range,” IEEE Trans. Circuits Syst., vol. 57, no. 6, pp. 1134–1142, June 2010.
[5]T. Okayasu, et al., “1.83 ps-Resolution CMOS dynamic arbitrary timing generator for ATE applications” IEEE ISSCC, pp. 2122-2131, Feb. 2006.
[6]J. A. Gasbarro, et al., “Integrated Pin Electronics for VLSI Functional Testers” IEEE J. Solid-State Circuits, vol.24, no.2, pp. 331-337, Apr. 1989.
[7]C.-W. Branson, et al., “Integrated pin electronics for a VLSI test system,” IEEE Transaction on Industrial Electronics, vol. 36, no. 2, pp. 185–191, May 1989.
[8]J. Christiansen, “An integrated high resolution CMOS timing generator based on an array of delay locked loops,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 952–957, July 1996.
[9]E. Räisänen-Ruotsalainen, et al., “An integrated time-to-digital converter with 30-ps single-shot precision,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1507-1510, Oct. 2000.
[10]A. H. Chan and G. W. Roberts, “A jitter characterization system using a component-invariant vernier delay line,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 1, pp. 79-95, Jan. 2004.
[11]T. Xia, et al., “Self-refereed on-chip jitter measurement circuit using vernier oscillators,” IEEE Computer Society Annual Symp. VLSI, pp. 218-223, May 2005.
[12]R. Nutt, “Digital time intervalometer,” Rev. Sci. Instrum, vol. 39, no. 9, pp. 1342-1345, 1968.
[13]E.-R Ruotsalainen, T. Rahkonen and J. Kostamovaara, “A low-power CMOS time-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 30, Issue 9, pp. 984-990, Sep. 1995.
[14]Agilent Technologies., “Practical Temperature Measurements,” Jan. 2012.
[15]張凱翔,2019,具內建偏移誤差消除之CMOS脈衝縮減式時間至數位轉換器,國立高雄科技大學,碩士論文。[16]C.-C. Chen, et al., “C All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters,” Rev. Sci. Instrum., vol. 86, no. 12, Dec. 2015.
[17]C.-C. Chen, et al., “All-Digital Cost-Efficient CMOS Digital-to-Time Converter Using Binary-Weighted Pulse Expansion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 1094-1098, April 2020.
[18]陳彥呈,2018,具精簡製程變異校正之全數位CMOS脈衝縮減時間至數位轉換器,國立高雄科技大學,碩士論文。[19]C.-C. Chen, et. al., “All-Digital Pulse-Shrinking Time-to-Digital Converter with Improved Dynamic Range,” Review of Scientific Instruments, vol. 87, no. 4, pp. 046104(1-3), Apr. 2016.
[20]R. Szplet, et al., “An FPGA-Integrated Time-to-Digital Converter Based on Two-Stage Pulse Shrinking,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1663-1670, June. 2010.
[21]朱哲勳,2017,基於脈衝擴增之全數位CMOS數位至時間轉換器,國立高雄科技大學,碩士論文。[22]Behzad Razavi, “Principles of Data Conversion System Design,” IEEE Press, 1995.
[23]Van De Plassche, et al., “Integrated Analog-to-Digital and Digital-to-Analog Converters,” Kluwer Academic Publishers, 1994.
[24]C.-C. Liu, et al., “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, 2010.
[25]Texas Instrments, “TXB0104 4-Bit Bidirectional Voltage-level Translator With Automatic Direction Sensing and ±15-kV ESD Protection,” Mar. 2018.
[26]STMicroelectronics, “LD1117 Adjustable and fixed low drop positive voltage regulator,” Feb. 2020.
[27]B. Arkin, “Realizing a production ATE custom processor and timing IC containing 400 independent low-power and high-linearity timing verniers,” IEEE ISSCC, 2004, pp. 348–349.
[28]J. A. Gasbarro, et al., “Integrated Pin Electronics for VLSI Functional Testers,” proc. IEEE CICC, 1989, pp. 331–337.
[29]N. Pavlovic, et al., “A 5.3 GHz digital-to-time-converter based fractional-N all-digital PLL,” IEEE ISSCC, 2011, pp. 54–56.
[30]C.-C. Chen, et al., “All-digital CMOS MOS-capacitor-based pulse-shrinking-mechanism,” Review of Scientific Instruments, vol. 86, no. 12, pp. 126113(1-3), 2015
[31]Y.-H. Kao et al., “A Direct-Sampling Pulsed Time-of-Flight Radar With Frequency-Defined Vernier Digital-to-Time Converter in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2665–2677, Nov. 2015.
[32]Yue Liu, et al., “Multi-stage Pulse Shrinking Time-to-Digital Converter for Time Interval Measurements,” European Microwave Integrated Circuit Conference, pp. 267-270, Oct., 2007.
[33]C.-C. Chen, et al., "A Low-Cost CMOS Smart Temperature Sensor Using a Thermal-Sensing and Pulse-Shrinking Delay Line," IEEE Sensors Journal, vol. 14, no. 1, pp. 278-284, Jan. 2014.
[34]P. Chen, et al., “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Trans. Circuits Syst. II, vol. 47 no. 9, pp. 954–958, Sep. 2000.
[35]R. Enomoto et al., “A 16-bit 2.0-ps Resolution Two-Step TDC in 0.18- μ m CMOS Utilizing Pulse-Shrinking Fine Stage With Built-In Coarse Gain Calibration,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 1,pp. 11-19, Jan. 2019.