[1]行政院環保署. (2012). 中華民國行政院環境保護署空字第1010106229號.
[2]中華民國工業安全衛生協會. (2018). 勞工作業場所容許暴露標準.
[3]Zheng, X.-y., Orellano, P., Lin, H.-l., Jiang, M., & Guan, W.-j. (2021). Short-term exposure to ozone, nitrogen dioxide, and sulphur dioxide and emergency department visits and hospital admissions due to asthma: A systematic review and meta-analysis. Environment international, 150, 106435.
[4]Huang, S., Li, H., Wang, M., Qian, Y., Steenland, K., Caudle, W. M., Liu, Y., Sarnat, J., Papatheodorou, S., & Shi, L. (2021). Long-term exposure to nitrogen dioxide and mortality: a systematic review and meta-analysis. Science of The Total Environment, 776, 145968.
[5]Bhowmick, T., Ghosh, A., Nag, S., & Majumder, S. (2022). Sensitive and selective CO2 gas sensor based on CuO/ZnO bilayer thin-film architecture. Journal of Alloys Compounds, 903, 163871.
[6]Cai, Z., & Park, S. (2022). Highly selective acetone sensor based on Co3O4-decorated porous TiO2 nanofibers. Journal of Alloys Compounds, 919, 165875.
[7]Chen, K., Zhou, Y., Jin, R., Wang, T., Liu, F., Wang, C., Yan, X., Sun, P., & Lu, G. (2022). Gas sensor based on cobalt-doped 3D inverse opal SnO2 for air quality monitoring. Sensors Actuators B: Chemical, 350, 130807.
[8]Chen, X., Liu, T., Wu, R., Yu, J., & Yin, X. (2022). Gas sensors based on Pd-decorated and Sb-doped SnO2 for hydrogen detection. Journal of Industrial Engineering Chemistry, 115, 491-499.
[9]Chen, Y., Li, H., Huang, D., Wang, X., Wang, Y., Wang, W., Yi, M., Cheng, Q., Song, Y., & Han, G. (2022). Highly sensitive and selective acetone gas sensors based on modified ZnO nanomaterials. Materials Science in Semiconductor Processing, 148, 106807.
[10]Ding, J., Dai, H., Chen, H., Jin, Y., Fu, H., & Xiao, B. (2022). Highly sensitive ethylene glycol gas sensor based on ZnO/rGO nanosheets. Sensors Actuators B: Chemical, 372, 132655.
[11]Gasso, S., Sohal, M. K., & Mahajan, A. (2022). MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2. Sensors Actuators B: Chemical, 357, 131427.
[12]Guo, M., Luo, N., Chen, Y., Fan, Y., Wang, X., & Xu, J. (2022). Fast-response MEMS xylene gas sensor based on CuO/WO3 hierarchical structure. Journal of Hazardous Materials, 429, 127471.
[13]Hu, Y., Li, T., Zhang, J., Guo, J., Wang, W., & Zhang, D. (2022). High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Sensors Actuators B: Chemical, 352, 130912.
[14]Li, A., Zhao, S., Bai, J., Gao, S., Wei, D., Shen, Y., Yuan, Z., & Meng, F. (2022). Optimal construction and gas sensing properties of SnO2@TiO2 heterostructured nanorods. Sensors Actuators B: Chemical, 355, 131261.
[15]Meng, X., Bi, M., Xiao, Q., & Gao, W. (2022). Ultrasensitive gas sensor based on Pd/SnS2/SnO2 nanocomposites for rapid detection of H2. Sensors Actuators B: Chemical, 359, 131612.
[16]Wu, K., Debliquy, M., & Zhang, C. (2022). Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chemical Engineering Journal, 444, 136449.
[17]Bonyani, M., Zebarjad, S. M., Janghorban, K., Kim, J.-Y., Kim, H. W., & Kim, S. S. (2022). Au sputter-deposited ZnO nanofibers with enhanced NO2 gas response. Sensors Actuators B: Chemical, 372, 132636.
[18]Chen, L., Shi, H., Ye, C., Xia, X., Li, Y., Pan, C., Song, Y., Liu, J., Dong, H., & Wang, D. (2023). Enhanced ethanol-sensing characteristics of Au decorated In-doped SnO2 porous nanotubes at low working temperature. Sensors Actuators B: Chemical, 375, 132864.
[19]Li, J., Xian, J., Wang, W., Cheng, K., Zeng, M., Zhang, A., Wu, S., Gao, X., Lu, X., & Liu, J.-M. (2022). Ultrafast response and high-sensitivity acetone gas sensor based on porous hollow Ru-doped SnO2 nanotubes. Sensors Actuators B: Chemical, 352, 131061.
[20]Wang, T., Liu, G., Zhang, D., Wang, D., Chen, F., & Guo, J. (2022). Fabrication and properties of room temperature ammonia gas sensor based on SnO2 modified WSe2 nanosheets heterojunctions. Applied Surface Science, 597, 153564.
[21]Zhang, B., An, X., Zhang, S., Wang, C., Zhao, Z., Bala, H., Zhang, Z. J. J. o. A., & Compounds. (2023). Two-step growth of core-shell TiO2/SnO2 nanorod arrays on FTO and its application in gas sensor. 169382.
[22]Kang, X., Deng, N., Yan, Z., Pan, Y., Sun, W., & Zhang, Y. (2022). Resistive-type VOCs and pollution gases sensor based on SnO2: a review. Materials Science in Semiconductor Processing, 138, 106246.
[23]Masuda, Y. (2022). Recent advances in SnO2 nanostructure based gas sensors. Sensors Actuators B: Chemical, 131876.
[24]Jiang, Q., Tong, J., Xian, Y., Kerner, R. A., Dunfield, S. P., Xiao, C., Scheidt, R. A., Kuciauskas, D., Wang, X., & Hautzinger, M. P. (2022). Surface reaction for efficient and stable inverted perovskite solar cells. Nature Photonics, 611(7935), 278-283.
[25]Guo, B., Lai, R., Jiang, S., Zhou, L., Ren, Z., Lian, Y., Li, P., Cao, X., Xing, S., & Wang, Y. (2022). Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 16(9), 637-643.
[26]Liu, A., Zhu, H., Bai, S., Reo, Y., Zou, T., Kim, M.-G., & Noh, Y.-Y. (2022). High-performance inorganic metal halide perovskite transistors. Nature Electronics, 5(2), 78-83.
[27]Bulemo, P. M., & Kim, I.-D. (2020). Recent advances in ABO3 perovskites: Their gas-sensing performance as resistive-type gas sensors. Journal of the Korean Ceramic Society, 57, 24-39.
[28]Wang, J., Ren, Y., Liu, H., Li, Z., Liu, X., Deng, Y., & Fang, X. (2022). Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Advanced Materials, 34(2), 2104958.
[29]Palimar, S., Kaushik, S., Siruguri, V., Swain, D., Viegas, A. E., Narayana, C., & Sundaram, N. G. (2016). Investigation of Ca substitution on the gas sensing potential of LaFeO3 nanoparticles towards low concentration SO2 gas. Dalton Transactions, 45(34), 13547-13555.
[30]Shi, C., Qin, H., Zhao, M., Wang, X., Li, L., & Hu, J. (2014). Investigation on electrical transport, CO sensing characteristics and mechanism for nanocrystalline La1−xCaxFeO3 sensors. Sensors Actuators B: Chemical, 190, 25-31.
[31]Al Baroot, A., Elsayed, K. A., Haladu, S. A., Magami, S. M., Alheshibri, M., Ercan, F., Çevik, E., Akhtar, S., Manda, A. A., & Kayed, T. (2023). One-pot synthesis of SnO2 nanoparticles decorated multi-walled carbon nanotubes using pulsed laser ablation for photocatalytic applications. Optics Laser Technology, 157, 108734.
[32]Perumal, V., Sabarinathan, A., Chandrasekar, M., Subash, M., Inmozhi, C., Uthrakumar, R., Isaev, A. B., Raja, A., Elshikh, M. S., & Almutairi, S. M. (2022). Hierarchical nanorods of graphene oxide decorated SnO2 with high photocatalytic performance for energy conversion applications. Fuel, 324, 124599.
[33]Gong, W., Wang, G., Gong, Y., Zhao, L., Mo, L., Diao, H., Tian, H., Wang, W., Zong, J., Wang, W., & Cells, S. (2022). Investigation of In2O3: SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell. Solar Energy Materials, 234, 111404.
[34]Xu, T., Jiang, M., Wan, P., Liu, Y., Kan, C., & Shi, D. (2023). High-performance self-powered ultraviolet photodetector in SnO2 microwire/p-GaN heterojunction using graphene as charge collection medium. Journal of Materials Science Technology, 138, 183-192.
[35]Mao, L.-W., Zhu, L.-Y., Wu, T. T., Xu, L., Jin, X.-H., & Lu, H.-L. (2022). Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods. Applied Surface & Science, 602, 154339.
[36]Yu, J.-B., Sun, M., Yu, M., Yang, M., Yu, H., Yang, Y., Dong, X.-T., & Xia, L. (2022). Preparation of near room temperature gas sensor based on regular octahedral porous ZnO/SnO2 composite. Journal of Alloys and Compounds, 920, 165884.
[37]Kim, J.-H., Mirzaei, A., Kim, J.-Y., Yang, D.-H., Kim, S. S., & Kim, H. W. (2022). Selective CO gas sensing by Au-decorated WS2-SnO2 core-shell nanosheets on flexible substrates in self-heating mode. Sensors Actuators B: Chemical, 353, 131197.
[38]Zhang, X., Sun, J., Tang, K., Wang, H., Chen, T., Jiang, K., Zhou, T., Quan, H., & Guo, R. (2022). Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Microsystems Nanoengineering, 8(1), 67.
[39]Shellaiah, M., & Sun, K. W. (2020). Review on sensing applications of perovskite nanomaterials. Chemosensors, 8(3), 55.
[40]Souri, M., & Amoli, H. S. (2023). Gas sensing mechanisms in ABO3 perovskite materials at room temperature: A review. Materials Science in Semiconductor Processing, 156, 107271.
[41]Fu, W., Ricciardulli, A. G., Akkerman, Q. A., John, R. A., Tavakoli, M. M., Essig, S., Kovalenko, M. V., & Saliba, M. (2022). Stability of perovskite materials and devices. Materials Today.
[42]Khalid, M., Roy, A., Bhandari, S., Selvaraj, P., Sundaram, S., & Mallick, T. K. (2022). Opportunities of copper addition in CH3NH3PbI3 perovskite and their photovoltaic performance evaluation. Journal of Alloys and Compounds, 895, 162626.
[43]Flores-Lasluisa, J. X., Huerta, F., Cazorla-Amorós, D., & Morallón, E. (2022). Manganese oxides/LaMnO3 perovskite materials and their application in the oxygen reduction reaction. Energy, 247, 123456.
[44]Lu, Z., Lou, C., Cheng, A., Zhang, J., & Sun, J. (2022). A sensitive and ultrafast FA0.83Cs0.17PbI3 perovskite sensor for NO2 detection at room temperature. Journal of Alloys and Compounds, 919, 165831.
[45]Chumakova, V., Marikutsa, A., Platonov, V., Khmelevsky, N., & Rumyantseva, M. (2023). Distinct Roles of Additives in the Improved Sensitivity to CO of Ag-and Pd-Modified Nanosized LaFeO3. Chemosensors, 11(1), 60.
[46]Yu, J., Wang, C., Yuan, Q., Yu, X., Wang, D., & Chen, Y. (2022). Ag-modified porous perovskite-type LaFeO3 for efficient ethanol detection. Nanomaterials, 12(10), 1768.
[47]Zhang, H., Xiao, J., Chen, J., Wang, Y., Zhang, L., Yue, S., Li, S., Huang, T., & Sun, D. (2022). Pd-Modified LaFeO3 as a High-Efficiency Gas-Sensing Material for H2S Gas Detection. Nanomaterials, 12(14), 2460.
[48]Hao, P., Qu, G.-M., Song, P., Yang, Z.-X., & Wang, Q. (2021). Synthesis of Ba-doped porous LaFeO3 microspheres with perovskite structure for rapid detection of ethanol gas. Rare Metals, 40, 1651-1661.
[49]Xiao, C., Zhang, X., Ma, Z., Yang, K., Gao, X., Wang, H., & Jia, L. (2022). Formaldehyde gas sensor with 1 ppb detection limit based on In-doped LaFeO3 porous structure. Sensors and Actuators B: Chemical, 371, 132558.
[50]Song, P., Hu, J., Qin, H., Zhang, L., & An, K. (2004). Preparation and ethanol sensitivity of nanocrystalline La0.7Pb0.3FeO3-based gas sensor. Materials letters, 58(21), 2610-2613.
[51]Hudspeth, J., Stewart, G. A., Studer, A. J., & Goossens, D. (2011). Crystal and magnetic structures in Perovskite-related La1−xCaxFeO3−δ (x= 0.2, 0.33). Journal of Physics Chemistry of Solids, 72(12), 1543-1547.
[52]Zeleny, J. (1914). The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 3(2), 69.
[53]Taylor, G. I. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical Physical Sciences, 280(1382), 383-397.
[54]Taylor, G. I. (1966). The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society of London. Series A. Mathematical Physical Sciences, 291(1425), 145-158.
[55]Taylor, G. I. (1969). Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical Physical Sciences, 313(1515), 453-475.
[56]Melcher, J., & Taylor, G. (1969). Electrohydrodynamics: a review of the role of interfacial shear stresses. Annual review of fluid mechanics, 1(1), 111-146.
[57]Hohman, M. M., Shin, M., Rutledge, G., & Brenner, M. P. (2001). Electrospinning and electrically forced jets. I. Stability theory. Physics of fluids, 13(8), 2201-2220.
[58]Reznik, S., Yarin, A., Theron, A., & Zussman, E. (2004). Transient and steady shapes of droplets attached to a surface in a strong electric field. Journal of Fluid Mechanics, 516, 349-377.
[59]Cozza, E. S., Monticelli, O., Marsano, E., & Cebe, P. (2013). On the electrospinning of PVDF: Influence of the experimental conditions on the nanofiber properties. Polymer International, 62(1), 41-48.
[60]Jacobs, V., Anandjiwala, R. D., & Maaza, M. (2010). The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of applied polymer science, 115(5), 3130-3136.
[61]Theron, S., Zussman, E., & Yarin, A. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer International, 45(6), 2017-2030.
[62]Rivai, M., Rahmannuri, H., Rohfadli, M., & Pirngadi, H. (2020). Monitoring of Carbon Monoxide and Sulfur Dioxide Using Electrochemical Gas Sensors Based on IoT. Paper presented at the 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA).
[63]Cao, Z., Gao, Q., Zhou, M., Li, X., & Wang, Q. (2022). LaNiTiO3-SE-based stabilized zirconium oxide mixed potentiometric SO2 gas sensor. Ceramics International, 48(7), 9269-9276.
[64]Lin, S., Zhou, Y., Hu, J., Sun, Z., Zhang, T., & Wang, M. J. S. (2022). Exploration for a BP-ANN model for gas identification and concentration measurement with an ultrasonically radiated catalytic combustion gas sensor. Sensors Actuators B: Chemical, 362, 131733.
[65]Li, Y., Yu, L., Zheng, C., Ma, Z., Yang, S., Song, F., Zheng, K., Ye, W., Zhang, Y., & Wang, Y. J. S. A. P. A. M. (2022). Development and field deployment of a mid-infrared CO and CO2 dual-gas sensor system for early fire detection and location. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 270, 120834.
[66]吳仁彰. (2004). 奈米材料應用於氣體感測器之發展. 科儀新知, 第二十六卷第三期.
[67]楊力儼、柯廷勳、曾文甲. (2019). 固態氣體感測器介紹. 科儀新知, 第 218 期.
[68]Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials science Engineering: B, 229, 206-217.
[69]游孟舜. (2021). 氧化鎢-氧化鑭異質結合奈米纖維於氣體感測與特性研究. (碩士), 國立高雄科技大學, 高雄市.[70]詹慶安. (2018). SnO2-ZnO與SnO2-La2O3異質結構於氣體感測器應用研究. (碩士), 國立高雄應用科技大學, 高雄市.[71]薛宇焜. (2020). 氧化鋅-鈣鈦礦異質結構之特性與氣體感測應用. (碩士), 國立高雄科技大學, 高雄市.[72]許智鈞. (2023). 二氧化錫-鋅鐵氧體奈米複合纖維薄膜於氣體感測與特性研究. (碩士), 國立高雄科技大學, 高雄市.[73]洪明豪. (2006). 鑭鈣鐵氧化物作為固態氧化物燃料電池陰極之相關性質. (碩士), 國立臺灣科技大學, 台北市.[74]Sankannavar, R., & Sarkar, A. (2018). The electrocatalysis of oxygen evolution reaction on La1−xCaxFeO3−δ perovskites in alkaline solution. international journal of hydrogen energy, 43(9), 4682-4690.
[75]Fan, H., Liu, Y., Zou, S., Duan, J., & Liu, W. (2022). Zn doping results in energy level offset and improvement of power conversion efficiency in SnO2 dye-sensitized solar cells. Indian Journal of Physics, 96(11), 3177-3184.
[76]Shi, Y.-L., Huang, D., & Ling, F. C.-C. (2022). Band offset and electrical properties of ErZO/β-Ga2O3 and GZO/β-Ga2O3 heterojunctions. Applied Surface Science, 576, 151814.
[77]Zhao, F., Wang, C., Wang, D., Yin, Y., Yu, J., Han, J., Zeng, J., & Chang, H. (2023). Efficient catalytic decomposition of N2O over Cd-doped NiO in the presence of O2. Applied Catalysis A: General, 649, 118946.
[78]Huang, L., Wang, M., Cheng, L., Pan, S., Yao, Q., Zhou, H. J. J. o. A., & Compounds. (2022). Fast and efficient synthesis of a new adjustable perovskite-structured ferrite La1− xCaxFeO3 microwave absorbent. 892, 162167.
[79]Sankannavar, R., & Sarkar, A. J. i. j. o. h. e. (2018). The electrocatalysis of oxygen evolution reaction on La1−xCaxFeO3−δ perovskites in alkaline solution. 43(9), 4682-4690.
[80]Tian, Z., Yang, X., Chen, Y., Wang, X., Jiao, T., Zhao, W., Huang, H., Hu, J. J. J. o. A., & Compounds. (2022). Construction of LaFeO3/g-C3N4 nanosheet-graphene heterojunction with built-in electric field for efficient visible-light photocatalytic hydrogen production. 890, 161850.
[81]Triyono, D., Hanifah, U., & Laysandra, H. J. R. i. P. (2020). Structural and optical properties of Mg-substituted LaFeO3 nanoparticles prepared by a sol-gel method. 16, 102995.
[82]Zhang, W., Xie, C., Zhang, G., Zhang, J., Zhang, S., & Zeng, D. (2017). Porous LaFeO3/SnO2 nanocomposite film for CO2 detection with high sensitivity. Materials Chemistry Physics of fluids, 186, 228-236.
[83]Modak, M., & Jagtap, S. (2022). Low temperature operated highly sensitive, selective and stable NO2 gas sensors using N-doped SnO2-rGO nanohybrids. Ceramics International, 48(14), 19978-19989.
[84]Ni, Q., Sun, L., Cao, E., Hao, W., Zhang, Y., & Ju, L. J. A. P. A. (2019). Enhanced acetone sensing performance of the ZnFe2O4/SnO2 nanocomposite. Applied Physics A, 125, 1-8.
[85]Zeng, W., Liu, Y., Mei, J., Tang, C., Luo, K., Li, S., Zhan, H., & He, Z. J. S. (2019). Hierarchical SnO2–Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sensors Actuators B: Chemical, 301, 127010.
[86]Bai, S., Fu, H., Zhao, Y., Tian, K., Luo, R., Li, D., & Chen, A. J. S. (2018). On the construction of hollow nanofibers of ZnO-SnO2 heterojunctions to enhance the NO2 sensing properties. Sensors Actuators B: Chemical, 266, 692-702.
[87]Kashyap, S. J., Sankannavar, R., & Madhu, G. J. A. P. A. (2022). Insights on the various structural, optical and dielectric characteristics of La1-xCaxFeO3 perovskite-type oxides synthesized through solution-combustion technique. 128(6), 518.
[88]陳柏達. (2021). 鑭鉛鐵氧/氧化鎢異質結構之氣體選擇性研究. (碩士), 國立高雄科技大學, 高雄市.[89]Hao, J., Zhang, D., Sun, Q., Zheng, S., Sun, J., & Wang, Y. J. N. (2018). Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. 10(15), 7210-7217.
[90]Liu, W., Gu, D., Li, X. J. S., & Chemical, A. B. (2020). Detection of Ppb-level NO2 using mesoporous ZnSe/SnO2 core-shell microspheres based chemical sensors. 320, 128365.
[91]Xiao, Y., Yang, Q., Wang, Z., Zhang, R., Gao, Y., Sun, P., Sun, Y., Lu, G. J. S., & Chemical, A. B. (2016). Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. 227, 419-426.