|
[1] M. Z. Rahman, and S. I. Khan, “Advances in Surface Passivation of c-Si Solar Cells,” Materials for Renewable and Sustainable Energy, Vol. 1, Issue 1, pp. 339-346, 2012. [2] U. Wurfel, A. Cuevas, and P. Wurfel, “Charge Carrier Separation in Solar Cells,” IEEE Journal of Photovoltaics, Vol. 5, Issue 1, pp. 461-469, 2015. [3] J. Bullock, C. Samundsett, A. Cuevas, D. Yan, Y. Wan, and T. Allen, “Proof-of-Concept P-Type Silicon Solar Cells with Molybdenum Oxide Partial Rear Contacts,” IEEE 42nd Photovoltaic Specialist Conference, 2015. [4] J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, “Molybdenum Oxide MoOx: A Versatile Hole Contact for Silicon Solar Cells,” Applied Physics Letters, Vol. 105, Issue 2, p. 232109, 2014. [5] C. Battaglia, S. M. D. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javey, “Silicon Heterojunction Solar Cell with Passivated Hole Selective MoOx Contact,” Applied Physics Letters, Vol. 104, Issue 11, p. 113902, 2014. [6] J. Bullock, M. Hettick, J. Geissbühler, A. J. Ong, T. Allen, C. M. S. Fella, T. Chen, H. Ota, E. W. Schaler, S. D. Wolf, C. Ballif, A. Cuevas, and A. Javey, “Efficient Silicon Solar Cells with Dopant-Free Asymmetric Heterocontacts,” Nature Energy, p. 15031, 2016. [7] J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, “N- and P-Type Silicon Solar Cells with Molybdenum Oxide Hole Contacts,” Energy Procedia, Vol. 77, pp. 446-450, 2015. [8] S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, and D. Li, “Interfacial Behavior and Stability Analysis of P-Type Crystalline Silicon Solar Cells Based on Hole-Selective MoOx/Metal Contacts,” Solar RRL, Vol. 3, Issue 11, p. 1900274, 2019. [9] Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, “Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer,” Advanced Materials, Vol. 23, Issue 19, pp. 2226-2230, 2011. [10] O. Nordseth, R. Kumar, K. Bergum, L. Fara, S. E. Foss, H. Haug, F Drăgan, D. Crăciunescu, P. Sterian, I. Chilibon, C. Vasiliu, L Baschir, D. Savastru, E. Monakhov, and B. G. Svensson, “Optical Analysis of a ZnO/Cu2O Subcell in a Silicon-Based Tandem Heterojunction Solar Cell,” Green and Sustainable Chemistry, Vol. 7, No. 1, pp. 57-69, 2017. [11] W. Niu, M. Zhou, Z. Ye, and L. Zhu, “Photoresponse Enhancement of Cu2O Solar Cell with Sulfur-Doped ZnO Buffer Layer to Mediate the Interfacial Band Alignment,” Solar Energy Materials and Solar Cells, Vol. 144, pp. 717-723, 2016. [12] Y. K. Hsu, J. R. Wu, M. H. Chen, Y. C. Chen, and Y. G. Lin, “Fabrication of Homojunction Cu2O Solar Cells by Electrochemical Deposition,” Applied Surface Science, Vol. 354, Part A, pp. 8-13, 2015. [13] H. S. Kim, J. W. Lim, S. J. Yun, M. A. Park, S. Y. Park, S. E. Lee, and H. C. Lee, “Fabrication and Characterization of Rapidly Oxidized P-Type Cu2O Films from Cu Films and Their Application to Heterojunction Thin-Film Solar Cells,” Japanese Journal of Applied Physics, Vol. 52, No. 10S, p. 10MB17, 2013. [14] N. Gupta, R. Singh, F. Wu, J. Narayan, C. M. Millen, G. F. Alapatt, K. F. Poole, S. J. Hwu, D. Sulejmanovic, M. Young, G. Teeter, and H. S. Ullal, “Deposition and Characterization of Nanostructured Cu2O Thin-Film for Potential Photovoltaic Applications,” Journal of Materials Research, Vol. 28, pp.1740-1746, 2013. [15] Z. Liang, Y. Wang, M. Su, W. Mai, J. Xu, W. Xie, and P. Liu, “Improving the Quality of the Si-Cu2O Interface by Methyl-Group Passivation and Its Application in Photovoltaic Devices,” Advanced Materials Interfaces, Vol. 4, Issue 6, pp. 71202-71209, 2017. [16] M. Z. Mohammed, A. A. A. Hilo, Z. Li, S. A. Almohsin, J. Armstrong, T. Chen, and J. Cui, “Cu2O/SWNTs/N-Si Heterojunctions for Enhanced Light Harvesting,” IEEE 39th Photovoltaic Specialists Conference, 2013. [17] S. Chatterjee, and A. J. Pal, “Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures,” The Journal of Physical Chemistry C, Vol. 120, Issue 47, pp. 26756-26763, 2016. [18] V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of Post-Annealing on the Properties of Copper Oxide Thin Films Obtained from the Oxidation of Evaporated Metallic Copper,” Applied Surface Science, Vol. 254, Issue 13, pp. 3949-3954, 2008. [19] K. Iqbal, M. Ikram, M. Afzal, and S. Ali, “Efficient, Low-Dimensional Nanocomposite Bilayer CuO/ZnO Solar Cell at Various Annealing Temperatures,” Materials for Renewable and Sustainable Energy, Vol. 7, No. 4, pp. 330-336, 2018. [20] T. Dimopoulos, A. Peic, P. Mullner, M. Neuschitzer, R. Resel, S. Abermann, M. Postl, E. J. W. List, S. Yakunin, W. Heiss, and H. Bruckl, “Photovoltaic Properties of Thin Film Heterojunctions with Cupric Oxide Absorber,” Journal of Renewable and Sustainable Energy, Vol. 5, Issue 1, p. 011205, 2013. [21] K. K. Markose, M. Shaji, S. Bhatia, P. R. Nair, K. J. Saji, A. Antony, and M. K. Jayaraj, “Novel Boron Doped P-Type Cu2O Thin Film as Hole Selective Contact in c-Si Solar Cell,” ACS Applied Materials & Interfaces, Vol. 12, Issue 3, pp. 3502-3509, 2020. [22] P. Ravindra, R. Mukherjee, and S. Avasthi, “Hole-Selective Electron-Blocking Copper Oxide Contact for Silicon Solar Cells,” IEEE Journal of Photovoltaics, Vol. 7, Issue 5, pp. 1278-1283, 2017. [23] C. Zuo, and L. Ding, “Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells,” Small: Nano Micro, Vol. 11, Issue 41, pp. 5528-5532, 2015. [24] R. Mukherjee, P. Srivastava, P. Ravindra, and S. Avasthi, “Doped Cu2O/n-Si Heterojunction Solar Cell,” IEEE 7th World Conference on Photovoltaic Energy Conversion, 2018. [25] Y. Liu, J. Zhu, L. Cai, Z. Yao, C. Duan, Z. Zhao, C. Zhao, and W. Mai, “Solution-Processed High-Quality Cu2O Thin Films as Hole Transport Layers for Pushing the Conversion Efficiency Limit of Cu2O/Si Heterojunction Solar Cells,” Solar RRL, Vol. 4, Issue 1, p. 7-14, 2020. [26] Z. Gan, B. Zhang, P. Zhou, X. Huang, C. Mei, and H. Wang, “Using Laser to Modulate a Linear Resistance Change in Cu2O/Si Heteroepitaxial Junction,” Applied Physics Letters, Vol. 109, Issue 3, p. 031106, 2016. [27] M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Metal/Metal-Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3,” Advanced Functional Materials, Vol. 23, Issue 2, pp. 215-226, 2013. [28] M. Zhang, L. Qiu, W. Li, J. Zhang, L. Wu, and L. Feng, “Copper Doping of MoOx Thin Films for CdTe Solar Cells,” Materials Science in Semiconductor Processing, Vol. 86, pp. 49-57, 2018. [29] L. Qiu, K. Chen, D. Yang, M. Zhang, X. Hao, W. Li, J. Zhang, and W. Wang, “Metal Copper Induced the Phase Transition of MoO3 to MoO2 Thin Films for the CdTe Solar Cells,” Materials Science in Semiconductor Processing, Vol. 122, p. 105475, 2021. [30] L. Feng, D. Mao, J. Tang, R. T. Collins, and J. U. Trefny, “The Structural, Optical, and Electrical Properties of Vacuum Evaporated Cu-Doped ZnTe Polycrystalline Thin Films,” Journal of Electronic Materials, Vol. 25, pp. 1422-1427, 1996. [31] H. Lin, W. Xia, H. N. Wu, and C. W. Tang, “CdS/CdTe Solar Cells with MoOx as Back Contact Buffers,” Applied Physics Letters, Vol. 97, Issue 12, p. 123504, 2010. [32] I. Irfan, and Y. Gao, “Effects of Exposure and Air Annealing on MoOx Thin Films,” Journal of Photonics for Energy, Vol. 2, Issue 1, p. 021213, 2012. [33] T. E. Warner, and E. M. Skou, “On the Coexistence of Copper–Molybdenum Bronzes: CuxMoO3 (0.2 < x < 0.25; Typically x ∼ 0.23) and CuyMoO3-z (0.1 < y < 0.2; Typically y ∼ 0.15) in the Cu–MoO2–O Quasi-Ternary System,” Materials Research Bulletin, Vol. 45, Issue 11, pp. 1635-1640, 2010.
|