1、Ahmed, K., Nizami, S. S., Raza, N. Z., & Habib, F. (2013). The effect of silica on the properties of marble sludge filled hybrid natural rubber composites. Journal of King Saud University-Science, 25(4), 331-339.
2、Ahn, N. S., Lee, J. H., & Lee, Y. H. (2011). Sulfate attack according to the quantity of composition of cement and mineral admixtures. Journal of the Korea Institute of Building Construction, 11(6), 547-556.
3、Andrade, O., Nomura, M., Yamato, H., & Torii, K. (2011). The mechanisms of alkali silica reaction in mortars immersed in sodium sulphate and phosphate solutions. Proceedings of the Japan Concrete Institute, 33(1), 1025-1030.
4、Bhoite, H. V., & Thorvat, A. R. (2020). Low cost treatment and reuse of grinding sludge. International Research Journal of Environmental Sciences, 9(2), 13-19.
5、Chen, Z., & Poon, C. S. (2017). Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Construction and Building Materials, 154, 791-803.
6、Cullity, B.D., & Stock, S.R(2001).Elements of X-Ray Diffeaction.Upper Saddle:Prentice Hall.New York.
7、Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal, 21(3), 275-283.
8、De Silva, G. S., & Hansamali, E. (2019). Eco-friendly fired clay bricks incorporated with porcelain ceramic sludge. Construction and Building Materials, 228, 116754.
9、Gu, C., Ji, Y., Yang, Y., Liu, J., & Ni, T. (2021). The effect of sulfate-rich sewage sludge ash on the volume deformation and micorstructure of cement paste.
10、Horvath, N., Honeycutt, A., & Davies, M. A. (2020). Grinding of additively manufactured silicon carbide surfaces for optical applications. CIRP Annals- Manufacturing Technology, 69(1), 509-512.
11、Jeon, I. K., Qudoos, A., Jakhrani, S. H., Kim, H. G., & Ryou, J. S. (2020). Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder. Powder Technology, 359, 181-189.
12、Jiang, Z., Ren, Q., Li, H., & Chen, Q. (2017). Silicon carbide waste as a source of mixture materials for cement mortar. Frontiers of Environmental Science & Engineering, 11(5), 1-8.
13、Katoh, Y., & Snead, L. L. (2019). Silicon carbide and its composites for nuclear applications–Historical overview. Journal of Nuclear Materials, 526, 151849.
14、Kumar, S., Panda, B. P., Mohanty, S., & Nayak, S. K. (2020). Effect of silicon carbide on the mechanical and thermal properties of ethylene propylene diene monomer‐based carbon fiber composite material for heat shield application. Journal of Applied Polymer Science, 137(37), 49097.
15、Lee, Y. L., Jeong, S. T., & Park, S. J. (2014). Study on manufacturing of recycled SiC powder from solar wafering sludge and its application. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 299-304.
16、Liu, P., Chen, Y., & Yu, Z. (2020). Effects of erosion form and admixture on cement mortar performances exposed to sulfate environment. Crystals, 10(9), 774.
17、Ma, J., Wang, D., Zhao, S., Duan, P., & Yang, S. (2021). Influence of particle morphology of ground fly ash on the fluidity and strength of cement paste. Materials, 14(2), 283.
18、Ma, Z., Li, J., Cao, F., Yang, J., Liu, R., & Zhao, D. (2020). Porous silicon carbide coated with tantalum as potential material for bone implants. Regenerative Biomaterials, 7(5), 453-459.
19、Mahawish, A., Ibrahim, S. I., Jawad, A. H., & Othman, F. M. (2017). Effect of adding silicon carbide and titanium carbide nanoparticles on the performance of the cement pastes. J. Civ. Environ. Eng, 7(2).
20、Phan, H. P., Dinh, T., Nguyen, T. K., Qamar, A., Nguyen, T., Han, J., Dau, V. T., Han, J., Dao, D. V., & Nguyen, N. T. (2020). High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. Journal of Hazardous Materials, 394, 122486.
21、Pinto, S. R., da Luz, C. A., Munhoz, G. S., & Medeiros-Junior, R. A. (2020). Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate. Cement and Concrete Research, 136, 106172.
22、Polyakov, S. A., Solomatina, T. V., & Shishkina, L. M. (1975). Nonabrasive silicon carbide as rammed lining for boiler furnaces. Refractories, 16(7), 426-428.
23、Qian, M., Xu, X., Qin, Z., & Yan, S. (2019). Silicon carbide whiskers enhance mechanical and anti-wear properties of PA6 towards potential applications in aerospace and automobile fields. Composites Part B: Engineering, 175, 107096.
24、Quercia, G., Van Der Putten, J. J. G., Hüsken, G., & Brouwers, H. J. H. (2013). Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM). Cement and Concrete Research, 54, 161-179.
25、Rashwan, M. A., Al-Basiony, T. M., Mashaly, A. O., & Khalil, M. M. (2020). Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement. Journal of Building Engineering, 32, 101697.
26、Saberi, M., Niknam, S. A., & Hashemi, R. (2020). On the impacts of cutting parameters on surface roughness, tool wear mode and size in slot milling of A356 metal matrix composites reinforced with silicon carbide elements. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405420937502.
27、Sadrmomtazi, A., Fasihi, A., Balalaei, F., & Haghi, A. K. (2009). Investigation of mechanical and physical properties of mortars containing silica fume and nano-SiO2. In Proceedings of the third international conference on concrete and development, Tehran, Iran (pp. 27-29).
28、Selim, M. S., Mo, P. J., Hao, Z., Fatthallah, N. A., & Chen, X. (2020). Blade-like structure of graphene oxide sheets decorated with cuprous oxide and silicon carbide nanocomposites as bactericidal materials. Journal of Colloid and Interface Science, 578, 698-709.
29、Souza, D. J. D., Medeiros, M. H. F. D., & Hoppe, J. (2020). Evaluation of external sulfate attack (Na2SO4 and MgSO4): Portland cement mortars containing siliceous supplementary cementitious materials. Revista IBRACON de Estruturase Materiais, 13.
30、Taeko, A., & Xiao-An,F.,(2019)Sensors and Actuators A:Physical. ELSEVIER. 296.340-351.
31、Zhang, W., Hama, Y., & Na, S. H. (2015). Drying shrinkage and microstructure characteristics of mortar incorporating ground granulated blast furnace slag and shrinkage reducing admixture. Construction and building materials, 93, 267-277.
32、行政院環保署,循環經濟,資源循環網。
33、鄭安(2011),光電矽晶粉應用於水泥基質材料力學及耐久性之研究,2011能源環境及可持續發展國際學術研討會,中國上海。
34、曾志雄、林志善(1997),石材污泥與切割邊材資源化利用之現況及未來展望,工業簡訊。
35、經濟部工業局(2002),資源化工業輔導計畫。
36、郭志成(1998),花崗石污泥吸附劑濕式排煙脫硫模型廠測試,1998工業減廢暨永續發展研討會,台北。
37、林凱隆、黃冠誌(2015),回收再利用廢噴砂取代部分水泥之經濟效益與碳排放分析,工業污染防治期刊,第132期。
38、李珣琦、黃偉聖(2017),廢矽泥回收研究之探討,工業污染防治期刊,第141期。
39、台灣綠色生產力基金會(2007),矽晶圓製造業資源化應用技術手冊。
40、黃兆龍(2007),混凝土性質與行為,詹氏書局,台北。
41、黃兆龍(2003),高性能混凝土理論與實務,詹氏書局,台北。
42、黃兆龍(1997),混凝土品質保證檢驗與制度,詹氏書局,台北。
43、中華民國品質協會(2009),田口式品質工程導論,台北。
44、林凱隆、張文軒(2014),回收再利用碳化矽污泥燒製環保磚之技術研發,科技部補助計畫。
45、林平全(1995),飛灰混凝土,科技圖書股份有限公司,台北。
46、陳嘉鴻(2008),碳熱還原燒結碳化矽陶瓷,國立聯合大學,苗栗縣,碩士論文。47、余欣容(2017),碳化矽低溫擴散接合之結構特性研究,國立臺北科技大學,台北市,碩士論文。48、林佩誼(2020),碳化矽微切削加工之刀具狀態及切削模式與聲射/切削力訊號之關聯性分析,國立中興大學,台中市,碩士論文。49、歐俊龍(2020),碳化矽耐火材料性能之研究,吳鳳科技大學,嘉義縣,碩士論文。50、林有德(2015),第三代半導體材料碳化矽發展趨勢研究,中華科技大學,台北市,碩士論文。51、莊富翔(2020),利用離子佈植製作4H碳化矽紫外光偵測器,國立交通大學,新竹縣,碩士論文。52、支耀崧(2019),以靜電紡絲法製作碳化矽纖維奠基技術研究,國防大學,桃園市,碩士論文。53、莊承叡(2020),回收再利用碳化矽污泥及廢玻璃纖維為觸媒應用於染整廢水,國立宜蘭大學,宜蘭縣,碩士論文。54、張正成(2012),LED污泥於水泥砂漿之工程性質研究,國立聯合大學,苗栗縣,碩士論文。55、張凱翔(2014),添加纖維對水泥砂漿之影響,國立雲林科技大學,雲林縣,碩士論文。56、于力偉(2020),含爐石飛灰之高性能混凝土應用於離岸風機灌漿材料之工程性質研究,國立高雄科技大學,高雄市,碩士論文。57、吳秉洋(2020),摻有高量卜作嵐材料混凝土耐久性之研究,國立中興大學,台中市,碩士論文。58、蔡嘉榮(2014),混合轉爐石粉與高爐石粉膠凝特性之研究,國立臺灣海洋大學,基隆市,博士論文。59、陳俊村(2012),矽灰混凝土配比簡化模式建構與其相應工程性質之研究,國立臺灣科技大學,台北市,博士論文。60、黃稚翔(2017),水流條件對卜作嵐混凝土沖擊磨耗之影響,國立嘉義大學,嘉義市,碩士論文。61、裴黎英俊(2010),越南稻殼灰燃燒方式及其對稻穀灰混凝土影響之研究,國立臺灣科技大學,台北市,碩士論文。62、王思婷(2019),利用田口法最佳化以複製模板回收廢棄碳化矽合成網狀多孔陶瓷,國立臺北科技大學,台北市,碩士論文。63、陳建良(2007),應用廢棄纖維、爐石和灰渣等再生材料於水泥砂漿之研究,國立中央大學,桃園市,碩士論文。64、楊士鋒(2019),流體化床鍋爐燃煤飛灰與混燒飛灰卜作嵐特性比較之研究-以紡織汙泥為例,國立中央大學,桃園市,碩士論文。