|
[1]C. Szegedy, W. Liu, and Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, "Going Deeper with Convolutions," IEEE Conference on Computer Vision and Pattern Recognition 2015, Massachusetts, United States of America, Jun. 7-12, 2015. [2]O. Krestinskaya, K. N. Salama, and A. P. James, "Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 719–732, Feb. 2019. [3]L. Michalas, S. Stathopoulos, A. Khiat, and T. Prodromakis, "An Electrical Characterisation Methodology for Identifying the Switching Mechanism in TiO2 Memristive Stacks," Scientific Reports, vol. 9, no. 1, pp. 1-8, Dec. 2019. [4]L. Tai, X Xu, P Yuan, J. Yu, Q. Luo, H. Lv, and M. Liu, "A CMOS Compatible, Forming Free TaON-based ReRAM with Low Soft Errors and Good Retention!!," IEEE International Conference on Integrated Circuits, Technologies and Applications 2018, Beijing, China, Nov. 21-23, 2018. [5]C. H. Cheng, C. Y. Tsai, A. Chin, and F. S. Yeh, "High Performance Ultra-Low Energy RRAM with Good Retention and Endurance," IEEE International Electron Devices Meeting 2010, California, United States of America, Dec. 6-8, 2010. [6]M. Ismail, I. Talib, A. M. Rana, E. Ahmed, and M. Y. Nadeem, "Performance Stability and Functional Reliability in Bipolar Resistive Switching of Bilayer Ceria Based Resistive Random Access Memory Devices," Journal of Applied Physics, vol. 117, no. 8, Feb. 2015. [7]H. Wang and X. Yan, "Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects," Physica Status Solidi – Rapid Research Letters, vol. 13, no. 9, pp. 1900073, May 2019. [8]R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, no. 25-26, pp. 2632–2663, Jul. 2009. [9]J. Park, K. P. Biju, S Jung, W. Lee, J. Lee, S. Kim, S. Park, J. Shin, and H. Hwang, "Multibit Operation of TiOx-Based ReRAM by Schottky Barrier Height Engineering," IEEE Electron Device Letters, vol. 32, no. 4, pp. 476–478, Apr. 2011. [10]I. Valov, "Interfacial Interactions and Their Impact on Redox-based Resistive Switching Memories (ReRAMs)," Semiconductor Science and Technology, vol. 32, no.9, pp. 093006, Sep. 2017. [11]A. Sebastian, M. Le Gallo, and E. Eleftheriou, "Computational Phase-Change Memory: Beyond Von Neumann Computing," Journal of Physics D: Applied Physics, vol. 52, no. 44, pp. 443002, Oct. 2019. [12]A. Chattopadhyay, C. H. Chang, and H. Yu, Emerging Technology and Architecture for Big-data Analytics, Springer International Publishing, pp. 77-81, 2017. [13]Y. Chen, "ReRAM: History, Status, and Future," IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1420–1433, Apr. 2020. [14]Y. C. Chen, C. C. Lin, S. T. Hu, C. Y. Lin, B. Fowler, and J. Lee, "A Novel Resistive Switching Identification Method through Relaxation Characteristics for Sneak-path-constrained Selectorless RRAM Application," Scientific Reports, vol. 9, no. 1, pp. 12420, Dec. 2019. [15]J. B. Reece, F. Rawle, R. Jackson, and P. V. Minorsky, S. Wasserman, S. J. Walde, M. L. Cain, L. A. Urry, C. Moyes, and D. G. Durnford, Campbell Biology, Pearson Publishing, pp. 154-161, Aug. 2018. [16]S. Yu, Neuro-inspired Computing Using Resistive Synaptic Devices, Springer International Publishing, pp.227-231, 2017. [17]B. Kasap and A. J. Van Opstal, "Dynamic Parallelism for Synaptic Updating in GPU-accelerated Spiking Neural Network Simulations," Neurocomputing, vol. 302, pp. 55–65, Aug. 2018. [18]Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang, "Review of Memristor Devices in Neuromorphic Computing: Materials Sciences and Device Challenges," Journal of Physics D: Applied Physics, vol. 51, no. 50, pp. 503002, Dec. 2018. [19]B. Pernici, Special Topics in Information Technology, Springer International Publishing, pp. 784-788, 2020. [20]T. Wang, Y. C. Lin, Y. F. Wang, C. W. Hsu, and T. H. Hou, "3D Synaptic Architecture with Ultralow Sub-10 fJ Energy per Spike for Neuromorphic Computation," IEEE International Electron Devices Meeting, California, United States of America, Dec. 15-17, 2014. [21]M. Ismail, S.-U. Nisa, A. M. Rana, T. Akbar, J. Lee, and S. Kim, "Enhancement of Resistive Switching Performance by Introducing a Thin Non-stoichiometric CeO2-x Switching Layer in TiO2-based Resistive Random Access Memory," Applied Physics Letters, vol. 114, no. 1, pp. 012101, Jan. 2019. [22]M. Zhao, B. Gao, J. Tang, H. Tang, and H. Wu, "Reliability of Analog Resistive Switching Memory for Neuromorphic Computing," Applied Physics Reviews, vol. 7, no. 1, pp. 011301, Mar. 2020. [23]H. J. Kim, M. Kim, K. Beom, H. Lee, C. J. Kang, and T. S. Yoon, "A Pt/ITO/CeO2/Pt Memristor with an Analog, Linear, Symmetric, and Long-term Stable Synaptic Weight Modulation," APL Materials, vol. 7, no. 7, pp. 071113, Jul. 2019. [24]W. Zhang, B. Gao, and J. Tang, X. Li, W. Wu, H. Qian, H. Wu, "Analog‐Type Resistive Switching Devices for Neuromorphic Computing," Physica Status Solidi – Rapid Research Letters, vol. 13, no. 10, pp. 1900204, Oct. 2019. [25]W. Wu, H. Wu, B. Gao, N. Deng, S. Yu, and H. Qian, "Improving Analog Switching in HfOx-Based Resistive Memory with a Thermal Enhanced Layer," IEEE Electron Device Letters, vol. 38, no. 8, pp. 1019–1022, Aug. 2017. [26]B. Gao, B. chen, and F. Zhang, P. Huang, L. Liu, X. Liu, and J.Kang, "Multi-bit Nonvolatile Logic Implemented with Metal-oxide Based Resistive Switching Device," Solid State Communications, vol. 205, pp. 51–54, Mar. 2015. [27]J. Woo, K. Moon, J. Song, S. Lee, M. Kawk, J. Park, and H. Hwang, "Improved Synaptic Behavior Under Identical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems," IEEE Electron Device Letters, vol. 37, no. 8, pp. 994–997, Aug. 2016. [28]H. Jiang, L. Han, P Lin, Z. Wang, M. H. Jang, Q. Wu, M. Barnell, J. J. Yang, H. L. Xin, and Q. Xia, "Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor," Scientific Reports, vol. 6, no. 1, pp. 28525, Jun. 2016. [29]S. Park, J. Noh, M. Choo, A. M. Sheri, M. Chang, Y. B. Kim, C. J. Kim, M. Jeon, B. G. Lee, B. H. Lee, and H. Hwang, "Nanoscale RRAM-based Synaptic Electronics: Toward a Neuromorphic Computing Device," Nanotechnology, vol. 24, no. 38, pp. 384009, Sep. 2013. [30]F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, pp. 1–18, 2014. [31]S. Chandrasekaran, F. M. Simanjuntak, R. Saminathan, D. Panda, and T.-Y. Tseng, "Improving Linearity by Introducing Al in HfO2 as a Memristor Synapse Device," Nanotechnology, vol. 30, no. 44, pp. 445205, Nov. 2019. [32]T. Ioroi, H. Kageyama, T. Akita, and K. Yasuda, "Formation of Electro-Conductive Titanium Oxide Fine Particles by Pulsed UV Laser Irradiation," Physical Chemistry Chemical Physics, vol. 12, no. 27, pp. 7529, Jun. 2010. [33]H. Khan and I. K. Swati, "Fe3+-doped Anatase TiO 2 with d–d Transition, Oxygen Vacancies and Ti3+ Centers: Synthesis, Characterization, UV–vis Photocatalytic and Mechanistic Studies," Industrial & Engineering Chemistry Ressearch, vol. 55, no. 23, pp. 6619–6633, Jun. 2016. [34]H. J. Kim, D. Park, and P. Yang, K. Beom, M. J. Kim, C. Shin, C. J. Kang, and T.-S. Yoon, "Synaptic Characteristics with Strong Analog Potentiation, Depression, and Short-term to Long-term Memory Transition in a Pt/CeO2/Pt Crossbar Array Structure," Nanotechnology, vol. 29, no. 26, pp. 265204, Jun. 2018. [35]Y. N. Zhong, T. Wang, X. Gao, J.-L. Xu, and S.-D. Wang, "Synapse-Like Organic Thin Fil m Memristors," Advanced Functional Materials, vol. 28, no. 22, pp. 1800854, May 2018. [36]J. J. Yang, J. P. Strachan, F. Miao, M.-X. Zhang, M. D. Pickett, W. Yi, D. Ohlberg, G. Medeiros-Ribeiro, and R. S. Williams, "Metal/TiO2 Interfaces for Memristive Switches," Applied Physics A, vol. 102, no. 4, pp. 785–789, Mar. 2011. [37]J. HoIzl and F. K. Schulte, Work Function of Metals, Springer, pp. 150, 1979. [38]Y. Itzhaik, T. Bendikov, D. Hines, P. V. Kamat, H. Cohen, and G. Hodes, "Band Diagram and Effects of the KSCN Treatment in TiO2/Sb2S 3/CuSCN ETA Cells," The Journal of Physical Chemistry C, vol. 120, no. 1, pp. 31–41, Jan. 2016. [39]S. Seetharaman, A. McLean, R. Guthrie, and S. Sridhar, Treatise on Process Metallurgy Elsevier Publishing, pp. 452, 2014. [40]D. Acharyya, A. Hazra, and P. Bhattacharyya, "A Journey Towards Reliability Improvement of TiO2 Based Resistive Random Access Memory: A review," Microelectronics Reliability, vol. 54, no. 3, pp. 541–560, Mar. 2014. [41]K. E. González–Flores, B Palacios-Márquez, J Álvarez–Quintana, S A Pérez–García, L Licea–Jiménez, P Horley, and A Morales-Sánchez, "Resistive Switching Control for Conductive Si-nanocrystals Embedded in Si/SiO2 Multilayers," Nanotechnology, vol. 29, no. 39, pp. 395203, Sep. 2018.
|