[1]蘇品書,線切割放電加工,復漢出版社,2000.
[2]L. Selvarajan, J. Rajavel, V.Prabakaran, B. Sivakunar, and G.jeeva, “A Review Paper on EDM Parameter of Composite material and Industrial Demand Material Machining,” materialstoday proceedings, Vol. 5, Issue 2, Part1, pp. 5513, 2018.
[3]A. Caggiano, F. Napolitano , R. Teti, S. Bonini and U. Maradia,”Advanced die sinking EDM process monitoring based on anomaly detection for online identification of improper process conditions,” Procedia CIRP Vol. 88, pp. 381-386, 2020.
[4]A. Caggianoa, R. Tetia, R. Perezb, and P. Xirouchakisc, “Wire EDM Monitoring for Zero-Defect Manufacturing based on Advanced Sensor Signal Processing,” 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering Procedia CIRP, Vol. 33, pp. 315-320, 2015.
[5]J. Gan, G. Wen, H. Yu, W. Zheng and C. Lei, “Supervised feature selection by self-paced learning regression,” Pattern Recognition Letters, August 2018.
[6]R. Dwaraka and N. Arunachalam, “Investigation on non-invasive process monitoring of Die Sinking EDM using Acoustic Emission signals,” Procedia Manufacturing Vol. 26, pp. 1471-1482, 2018.
[7]張廷彥,“微放電加工效率與能力提昇之研究”,國立臺灣大學機械工程研究所碩士論文,2010.[8]蘇庭煒,”開發放電加工之智慧型關鍵特徵萃取系統”,高雄第一科技大學電機工程研究所碩士論文,2017.[9]謝慶嶧,”智慧製造分析工具箱之開發”,國立高雄科技大學電機工程研究所碩士論文,2019.[10]W. König, R. Wertheim, A. Wei ,”Funkenerosive Bearbeitung von Hartmetall,” VS Verlag fiir Sozialwissenschaften, pp. 123 1974.
[11]T. Bergs, M. Mohammadnejad, M. Witteler, L. Heidemanns and A. Klink, “Experimental Investigation on Process Signature for EDM Processes,” Procedia CIRP Vol. 87, pp. 273-278, 2020.
[12]J. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artificial Intelligence Review Vol. 22, pp. 85-126, 2004.
[13]J. Francis, D. Addison, S. Wermter, and J. MacIntyre, “Effectiveness of Feature Extraction in Neural Network Architectures for Novelty Detection,” Proceedings of the ICANN Conference, 1999.
[14]M. Kopp, T. Pevný and M. Holeňa, “Anomaly explanation with random forests,” Expert Systems with Applications Vol. 149, July 2020.
[15]Z. Zhang, Z.Yang, W. Ren and G. Wen, “Random forest-based real-time defect detection of Al alloy in robotic arc welding using optical spectrum,” Journal of Manufacturing Processes. Vol. 42, pp. 51-59, June 2019.
[16]T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” University of Washington, 2016.
[17]D. Chakraborty and H. Elzarka, “Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold,” Energy and Buildings Vol. 185, pp. 326-344, Feb 2019.
[18]P. K. Bossom, ” Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride,” International Journal of Refractory Metals & Hard Materials Vol. 18 pp. 147-151, 2000.
[19]Y. Jia and J. Li, “Impact Analysis of Electrode Material on Electrical Discharge Grinding Polycrystalline Diamond Cutting Tools,” 19th CIRP Conference on Electro Physical and Chemical Machining, pp. 23-27, April 2018.
[20]X. Wang, S. Yi, M. Easton and S. Ding, “Active gap capacitance electrical discharge machining of polycrystalline diamond,” Journal of Materials Processing Tech, Vol. 280, pp. 2-5, 2020.
[21]L. Breiman, “Classification and Regression Trees,” Wadsworth and Brooks, Pacific Grove CA, 1984.
[22]L. Breiman, “Random Forests,” Machine Learning, pp. 5-32, 2001.
[23]J. Pei, L. Zhang, J. Du, X. Zhuang, Z. Zhou, S. Wu, Y. Zhu, “A model of tool wear in electrical discharge machining process based on electromagnetic theory,” Int. J.Mach. Tools Manuf. Vol. 117, pp. 31–41, 2017.
[24]S. Chen, “Evaluating the Effectiveness of Random Forest Mosel,” Mater Thesis of NCTU, pp. 12-20, 2015.
[25]I. Wu, “Network Synchronization in the Presence of Random Routing Delays,” Mater Thesis of NCTU, pp. 41-43, 2016.