|
[1] I. Pokorska, 2008, “Deformation of powder metallurgy materials in cold and hot forming”, Journal of Materials Process Technol, vol. 196, pp. 15-32 [2] J. R. Pickens, 1981, “Aluminum powder metallurgy technology for high-strength applications”, Journal of Materials Science, vol. 16, pp. 1437-1457 [3] G. S. Cole, and A. M. Sherman, 1995, “Lightweight materials for automotive applications”, Materials Characterization, vol. 35, pp. 3-9 [4] K. S. Dunnet, R. M. Mueller, D. P. Bishop, 2008, “Development of Al–Ni–Mg–(Cu) aluminum P/M alloys” J Mater Process Technol, vol. 198, pp. 31-40 [5] D. U. Kim, Y. Choi, B. Y. Kang, J. H. Park, H. T. Yeo, J. H. Kim, S. W. Park, 2015, “A Study on Process Design of Automobile Parts Using Extruded Material by Die Forming” Mechanical Engineering, vol. 1, pp. 12 [6] Z. Yu, Z. Lin, Y. Zhao, 2007, “Evaluation of fracture limit in automotive aluminum alloy sheet forming” Mater and Design, vol. 28, pp. 203-207 [7] K. Gordon, 2004, “Joining of Carbon Fiber Reinforced Plastics for Automotive Applications” comprehensive summary (Other scientific), pp. 26 [8] T. Schubert, T. Weissagaerber, B. Kieback, H. Balzer, H. C. Neubing, U. Baum, R. Braun, 2005, “Aluminum PM is a challenge that industry can overcome Conference proceedings”, Powder Metallurgy World Congress & Exhibition, vol. 60, pp. 627-632 [9] H. Lu, Y. T. Yao, W. M. Huang, D. Hui, 2014, Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites”, Composites Part B Engineering, vol. 67, pp. 290-295 [10] J. Park, et al, 2017, “Mechanical properties of individual nanorods and nanotubes in forest-like structures”, Scripta Materialia, vol. 133, pp. 54-58 [11] M. K. Akbari, H. R. Baharvandi, O. Mirzaee, 2013, “Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties”, Composites Part B Engineering, vol. 55, pp. 426-432 [12] Z. Hu, et al, 2017, “Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics”, Composites Part B Engineering, vol. 121, pp. 108-121 [13] C. D. Boland, R. L. Hexemer, I. W. Donaldson, D. P. Bishop, 2013, “Industrial processing of a novel Al–Cu–Mg powder metallurgy alloy”, Materials Science & Engineering A, vol. 559, pp. 902–908 [14] X. Cao, Q. Shi, Z. Feng, G. Chen, 2018, “Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors”, Composites Part B Engineering, vol. 139, pp. 97-105 [15] R. Nandan, T. Debroy, H. Bhadeshia, 2008, “Recent advances in friction-stir welding–process”, Materials Science and Engineering, vol. 53, pp. 980-1023 [16] R. S. Mishra, Z. Y. Ma, 2005, “Friction stir welding and processing”, Materials Science and Engineering, vol. 50, pp. 1-78 [17] A. Ibrahim, D. Bishop, G. Kipouros, 2015, “Sinterability and characterization of commercial aluminum powder metallurgy alloy Alumix 321”, Powder Technology, vol. 279, pp. 106–112 [18] M. Dehestani, K. Trumble, H. Wang, H. Wang, L. Stanciu, 2017, “Effects of microstructure and heat treatment on mechanical properties and corrosion behavior of powder metallurgy derived Fe–30Mn alloy”, Materials Science & Engineering A, vol. 703, pp. 214–226 [19] K. Dadej, J. Bienias, B. Surowska, 2017, “Residual fatigue life of carbon fiber aluminum laminates”, International Journal of Fatigue, vol. 100, pp. 94–104 [20] A. Gokçe, F. Findik, A. O. Kurt, 2011, “Microstructural examination and properties of premixed Al–Cu–Mg powder metallurgy alloy”, Materials Characterization, vol. 62, pp. 730-735 [21] A. Nassar, E. Nassar, 2017, “ Properties of aluminum matrix Nano composites prepared by powder metallurgy processing”, Engineering Science, vol. 29, pp. 295-299
|