[1]J. Su, X. Wu, D. Raabe, Z. Li. Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy. Acta Mater. 167 (2019) 23-39.
[2]C. Y. Hsu, T. S. Sheu, J. W. Yeh, S. K. Chen. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear.268(2010) 653-659.
[3]S. G. Ma, Y. Zhang. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Materials Science and Engineering: A. 532(2012) 480-486.
[4]S. Liu, M. C. Gao, P. K. Liaw, Y. Zhang. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. Journal of Alloys and Compounds. 619(2015) 610-615.
[5]C. E. Slone, S. Chakraborty, J. Miao, E. P. George, M. J. Mills, S. R. Niezgoda. Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy. Acta Materialia. 158(2018) 38-52.
[6]K. F. Quiambao, S. J. McDonnell, D. K. Schreiber, A. Y. Gerard, K. M. Freedy, P. Lu, J. E. Saal, G. S. Frankel, J. R. Scully. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions. Acta Materialia. 164(2019) 362-376.
[7]Y. Wang, R. Li, P. Niu, Z. Zhang, T. Yuan, J. Yuan, K. Li. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics. 120 (2020) 106746.
[8]Y. Y. Zhao, Y. X. Ye, C. Z. Liu, R. Feng, K. F. Yao, T. G. Nieh. Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique. Intermetallics. 113 (2019) 106561.
[9]Z. S. Nong, Y. N. Lei, J. C. Zhu. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys. Intermetallics. 101 (2018) 144-151.
[10]B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 375 (2004) 213-218.
[11]P. P. Li, A. D. Wang, and C. T. Liu. A ductile high entropy alloy with attractive magnetic properties. Journal of Alloys and Compounds. 694 (2017) 55-60.
[12]J. S. F. T. Antonio, D. M. Yim, H. S. Kim, and B. J. Lee. An approach for screening single phase high-entropy alloys using an in-house thermodynamic database. Intermetallics. 101 (2018) 56-63.
[13]T. Yang, Y. L. Zhao, Y. Tong, Z. B. Jiao, J. Wei, J. X. Cai, X. D. Han, D. Chen, A. Hu, J. J. Kai, K. Lu, Y. Liu, and C. T. Liu. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 362 (2018) 933-937
[14]B. X. Cao, C. Wang, T. Yang, and C. T. Liu. Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia. 187 (2020) 250-255.
[15]Q. L. Xu, Y. Zhang, S. H. Liu, C. J. Li, and C. X. Li. High-temperature oxidation behavior of CuAlNiCrFe high-entropy alloy bond coats deposited using high-speed laser cladding process. Surface and Coatings Technology. 398 (2020) 126093.
[16]J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials. 6 (2004) 299-303.
[17]B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 375–377 (2004) 213-218.
[18]C. Li, J. C. Li, M. Zhao and Q. Jiang. Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds. 504 (2010) S515-S518.
[19]W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai, Han, and J. W. Yeh. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 26 (2012) 44-51.
[20]Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu. Microstructures and properties of high-entropy alloys. Progress in Materials Science. 61 (2014) 1-93.
[21]S. G. Ma, P. K. Liaw, M. C. Gao, J. W. Qiao, Z. H. Wang, Han, and Y. Zhang. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer. Journal of Alloys and Compounds. 604 (2014) 331-339.
[22]Y. Yu, J. Wang, J. S. Li, J. Yang, H. C. Kou, and W. M. Liu. Tribological Behavior of AlCoCrFeNi(Ti0.5) High Entropy Alloys under Oil and MACs Lubrication. Journal of Materials Science & Technology. 32 (2016) 470-476.
[23]C. L. Tracy, S. Park, D. R. Rittman, S. J. Zinkle, H. Bei, M. Lang, R. C. Ewing, and W. L. Mao. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nature Communications. 8 (2017) 1-6.
[24]Z. S. Nong, Y. N. Lei, and J. C. Zhu. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys. Intermetallics. 101 (2018) 144-151.
[25]J. M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, and E. M. Acuna. Design, Microstructure and Mechanical Properties of Cast Medium Entropy Aluminium Alloys. NIH scientific reports. (2019) 1-12.
[26]S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, and N. Tsuji. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys. Acta Materialia. 171 (2019) 201-215.
[27]Z. Q. Zhou, Y. J. Zhou, Q. F. He, Z. Y. Ding, and F. H. Li. Machine learning guided appraisal and exploration of phase design for high entropy alloys. npj Computational Materials. 5 (2019) 1-9.
[28]Y. Wang, R. Li, P. Niu, Z. Zhang, T. Yuan, J. Yuan, and K. Li. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics. 120 (2020) 106746.
[29]C. C. Yen, G. R. Huang, Y. C. Tan, H. W. Yeh, D. J. Luo, K. T. Hsieh, E. W. Huang, J. W. Yeh, S. J. Lin, C. C. Wang, C. L. Kuo, S. Y. Chang, and Y. U. Lo. Lattice distortion effect on elastic anisotropy of high entropy alloys. Journal of Alloys and Compounds. 818 (2020) 152876.
[30]K. H. Lin, S. Y. Chang, Y. C. Lo, C. C. Wang, S. J. Lin, and J. W. Yeh. Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test. Intermetallics. 118 (2020) 106635.
[31]X. Feng, R. D. Fu, Y. J. Li, B. W. Xu, and X. W. Qi. Influences of nitrogen alloying on microstructural evolution and tensile properties of CoCrFeMnNi high-entropy alloy treated by cold-rolling and subsequent annealing. Materials Science and Engineering: A. 787 (2020) 139472.
[32]Y. Qi, M. Zhao, and M. Feng. Molecular simulation of microstructure evolution and plastic deformation of nanocrystalline CoCrFeMnNi high-entropy alloy under tension and compression. Journal of Alloys and Compounds. 851 (2021) 156923.
[33]X. Zhen, D. Y. Li, and D. L. Chen. Effect of Ti on the wear behavior of AlCoCrFeNi high-entropy alloy during unidirectional and bi-directional sliding wear processes. Wear. 476 (2021) 203650.
[34]C. D. Wu, T. H. Fang, and F. Y. Tung. Interface friction of double-walled carbon nanotubes investigated using molecular dynamics. Micromachines.8 (2017) 84.
[35]S. Zeroual, H. Loulijat, E. Achehal, P. Estellé, A. Hasnaoui, and S. Ouaskit. Viscosity of Ar-Cu nanofluids by molecular dynamics simulations: Effects of nanoparticle content, temperature and potential interaction. Journal of Molecular Liquids. 268 (2018) 490-496.
[36]D. Q. Doan, T. H. Fang, A. S. Tran, and T. H. Chen. Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Computational Materials Science. 170(2019) 109162.
[37]D. Q. Doan, T. H. Fang, and T. H. Chen. Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. International Journal of Mechanical Sciences. 185 (2020) 105865.
[38]V. T. Nguyen, and T. H. Fang. Material removal and interactions between an abrasive and a SiC substrate: A molecular dynamics simulation study. Ceramics International. 46 (2020) 5623-5633.
[39]V. T. Pham, and T. H. Fang. Pile-up and heat effect on the mechanical response of SiGe on Si(0 0 1) substrate during nanoscratching and nanoindentation using molecular dynamics. Computational Materials Science. 174 (2020) 109465.
[40]S. Guo, H. Chen, and M. Wang. Research on the dislocation differences of CoCrFeMnNi with different local chemical orders during room temperature tensile test. Journal of Alloys and Compounds. 868 (2021) 159215.
[41]X. Wang, W. Xiao, J. W. Wang, L. Sun, J. M. Shi, H. Guo, Y. Q. Liu, and L. G. Wang. Enhanced interfacial strength of graphene reinforced aluminum composites via X (Cu, Ni, Ti)-coating: Molecular-dynamics insights. Advanced Powder Technology. 32 (2021) 2585-2590.
[42]D. Q. Doan, T. H. Fang, and T. H. Chen. Microstructure and composition dependence of mechanical characteristics of nanoimprinted AlCoCrFeNi high-entropy alloys. Scientific Reports. 13680 (2021) 1-19.
[43]Y. M. Qi, H. M. Xu, T. W. He, M. Wang, and M. L. Feng. Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading. International Journal of Refractory Metals and Hard Materials. 95 (2021) 105415.
[44]M. P. Chang, Y. S. Lu, and T. H. Fang. Mechanical mechanism and deformation behavior of polycrystalline and gradient Ni50−xTi50Alx alloys using molecular dynamics. Materials today communications.28(2021) 102724.
[45]A. S. Tran, and T. H. Fang. The influence of intrinsic size in amorphous CuxTa100-x/Cu crystalline nanolaminates using molecular dynamics simulation. Physica E: Low-dimensional Systems and Nanostructures. 126(2021) 114470.
[46]B. Chen, W. P. Wu, and M. X. Chen. Orientation dependence of microstructure deformation mechanism and tensile mechanical properties of Nickel-based single crystal superalloys: A molecular dynamics simulation. Computational Materials Science. 202 (2022) 111015.
[47]A. V. Pham, T. H. Fang, V. T. Nguyen, and T. H. Chen. Mechanical characteristics of Ni50Co50/Ni substrate during indentation by molecular dynamics. Modelling and Simulation in Materials Science and Engineering. 30 (2022) 045006.
[48]D. Q. Doan, T. H. Fang, T. H. Chen. Nanomachining characteristics of textured polycrystalline NiFeCo alloy using molecular dynamics. Journal of Manufacturing Processes.74 (2022) 423-440.
[49]C. X. Ma, E. Shamoto, T. Moriwaki, and L. J. Wang. Study of machining accuracy in ultrasonic elliptical vibration cutting. International Journal of Machine Tools and Manufacture. 44 (2004) 1305-1310.
[50]C. Nath, M. Rahman, and K. S. Neo. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting. International Journal of Machine Tools and Manufacture. 49 (2009) 1089-1095.
[51]P. Z. Zhu, Y. Z. Hu, T. B. Ma, and H. Wang. Study of AFM-based nanometric cutting process using molecular dynamics. Applied Surface Science. 256(2010) 7160-7165.
[52]P. Zhang, H. W. Zhao, C. L. Shi, L. Zhang, H. Huang, and J. Q. Ren. Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation. Applied Surface Science. 280 (2013) 751-756.
[53]M. Zhou, and L. H. Hu. Development of an innovative device for ultrasonic elliptical vibration cutting. Ultrasonics. 60 (2015) 76-81.
[54]Y. Zhao, X. L. Wei, Y. Zhang, J. C. Wang, and D. H. Huo. Crystallization of amorphous materials and deformation mechanism of nanocrystalline materials under cutting loads: A molecular dynamics simulation approach. Journal of Non-Crystalline Solids. 439 (2016) 21-29.
[55]H. Dai, G. Chen, S. Li, Q. Fang, and B. Hu. Influence of laser nanostructured diamond tools on the cutting behavior of silicon by molecular dynamics simulation. RSC Adv. 7 (2017) 15596-15612.
[56]C. D. Wu, T. H. Fang, and J. K. Su. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation. Applied Surface Science. 396 (2017) 319-326.
[57]A. T. AlMotasem, J. Bergström, A. Gåård, P. Krakhmalev, L. J. Holleboom. Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: an atomic level simulation. Wear. 370-371 (2017) 39-45.
[58]D. Q. Doan, T. H. Fang, and T. H. Chen. Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting. Intermetallics. 131 (2021) 107079.
[59]J. G. Kirkwood. The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Visco‐elastic behavior. Recueil des Travaux Chimiques des Pays‐Bas. 68 (1949) 649-660.
[60]J. H. Irving, and J. G. Kirkwood. The Statistical Mechanical Theory of Transport Processes. Iv. The Equations of Hydrodynamics. The Journal of Chemical Physics. 18 (1950) 817-829.
[61]蕭至緯,“分子動力學模擬奈米多晶粒薄膜之機械特性分析,” 國立高雄科技大學碩士論文, 2016。[62]趙冠棋,“分子動力學分析非晶質鎳鋯合金之機械,” 國立高雄科技大學碩士論文, 2015。[63]陸裕昇,“分子動力學模擬鎳鈷鉻中熵合金之機械與加工特性,” 國立高雄科技大學碩士論文, 2021。[64]T. J. Rupert. Strain localization in a nanocrystalline metal: atomic mechanisms and the effect of testing conditions. Journal of Applied Physics. 114.3 (2013) 033527.
[65]K. E. Avila, S. Küchemann, I. A. Alhafez, and H. M. Urbassek. Nanoscratching of metallic glasses–An atomistic study. Tribology International. 139 (2019) 1-11
[66]C. Qiu, P. Zhu, F. Fang, D. Yuan, and X. Shen. Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science. 305 (2014) 101-110.
[67]L. Xie, P. Brault, A. L. Thomann, and J. M. Bauchire. AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Applied Surface Science. 285 (2013) 810-816.
[68]C. W. Gear. Numerical initial value problems in ordinary differential equations. Prentice-Hall series in automatic computation. Englewood Cliffs, NJ. (1971).
[69]D. Fincham, and D. M. Heyes. Integration algorithms in molecular dynamics. CCP5 Quarterly. 6 (1982) 4-10.
[70]洪崇瑋,“二維石墨炔機械與熱傳導特性之研究,” 國立高雄科技大學碩士論文, 2019。[71]J. M. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay. Molecular dynamics simulation: elementary methods. Computers in Physics. 7 (1993) 625.
[72]D. Frenkel, B. Smit, J. Tobochnik, S. R. McKay, and W. Christian. Understanding molecular simulation. Computers in Physics. 11 (1997) 351-354.
[73]J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles. Surface Step Effects on Nanoindentation. Physical Review Letters. 87 (2001) 165507.
[74]W. C. Oliver, and G. M. Pharr. Measurement of Hardness and Elastic Modulus by Instrumented Indentation:Advances in Umderstanding and Refinements to Methodology. Journal of Materials Research. 19 (2004) S247-S78.
[75]蘇祉愷,“分子動力學模擬非晶態鎳鋁合金之壓印與切削加工特性,” 國立高雄應用科技大學碩士論文, 2015。[76]H. Dai, H. Du, J. Chen, and G. Chen. Influence of elliptical vibration on the behavior of silicon during nanocutting. The International Journal of Advanced Manufacturing Technology.102 (2019)3597-3612.
[77]X. Zhang, A.S. Kumar, M. Rahman, C. Nath, and K. Liu. Experimental study on ultrasonic elliptical vibration cutting of hardened steel using PCD tools. Journal of Materials Processing Technology. 211(2011) 1701-1709.
[78]D. Hull, and D. J. Bacon. Chapter 5 - Dislocations in Face-centered Cubic Metals. Introduction to Dislocations (Fifth Edition). (2011) 85-107.
[79]J. C. Huang. Evaluation of tribological behavior of Al-Co‐Cr‐Fe‐Ni high entropy alloy using molecular dynamics simulation. Scanning. 34 (2012) 325-331.
[80]C. Nath, and M. Rahman. Effect of machining parameters in ultrasonic vibration cutting. International Journal of Machine Tools and Manufacture. 48 (2008) 965-974.
[81]Y. Liu, S. Ma, M. C. Gao, C. Zhang, T. Zhang, H. Yang, Z. Wang, and J. Qiao. Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metallurgical and Materials Transactions A. 47 (2016) 3312–3321
[82]Y. Wang, Y. Yang, H. Yang, M. Zhang, and J. Qiao. Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy. Journal of Alloys and Compounds. 725 (2017) 365-372.