[1]HU, Y. H. , (2013). Accident analysis and safety assessment of marine machinery system[M]. Beijing: China Communications Press, 12 (in Chinese).
[2]LI, B. , CHEN, M. Y. , WANG, R. R. , et al. (2015). Fault diagnosis for the ship electric propulsion system[C], Proceedings of 2015 11th International Conference on Natural Computation. Zhangjiajie, China: IEEE, pp. 714-718.
[3]Cao, L. , Shen, Y. , Shan, T. , Xia, Y. , Wang, J. , Lin, Z. , (2018). Bearing Fault Diagnosis Method Based on GMM and Coupled Hidden Markov Model, 2018 Prognostics and System Health Management Conference (PHM-Chongqing), IEEE.
[4]I. Morgan, B. Tormos, A. Salai, et al. ,(2009). Detection and Diagnosis of Incipient Faults in Heavy Duty Diesel Engines [J]. Industrial Electronics, 57(10): pp. 3522-3532.
[5]SINHA, J. K. , ELBHBAH K. , (2013). A future possibility of vibration based condition monitoring of rotating machines[J]. Mechanical Systems and Signal Processing, 34(1/2): pp. 231–240.
[6]LAMARIS, V. T. , HOUNTALAS. D. T. , (2009). Possibility to determine diesel engine condition and tuning from the application of a diagnostic technique at a single operating point[J]. SAE International Journal of Engines, 2(1): pp. 585–605
[7]YU, Y. H. , (2007). Research on monitoring and diagnosing for marine diesel engine based on instantaneous angular speed and thermal parameters[D]. Wuhan: Wuhan University of Technology, (in Chinese).
[8]ARVESON, P. T. , (2000). VENDITTIS, D. J. , Radiated noise characteristics of a modern cargo ship[J]. The Journal of the Acoustical Society of America, 107(1): pp. 118–129.
[9]LIN, T. , HORNE, B. G. , TINO, P. ,et al. ,(1996). Learning longterm dependencies in NARX recurrent neural networks[J]. IEEE Transactions on Neural Networks, 7(6): pp. 1329–1338.
[10]Liu, B. , Pan, H. , Li, X. , (2010). An Expert System for Fault Diagnosis in Diesel Engine Based on Wavelet Packet Analysis and Hybrid PSO-DV Based Neural Network. 2010 International Conference on Intelligent Computing and Cognitive Informatics, IEEE.
[11]Liu, C. , (2017). Research and Application of Computer Aided Analysis and Optimization Algorithm for Fault Tree. 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC), IEEE.
[12]Alsabti, K. , Ranka, S. , Singh, V. , (1998). An Efficient Parallel Algorithm for High Dimensional Similarity Join[C], Parallel Processing Symposium, Ipps/spdp 1998. Proceedings of the First Merged International. and Symposium on Parallel and Distributed Processing. IEEE, pp. 556-560.
[13]Ni, F. Y. , Cheng, H. Z. , (2005). Improved neural network BP algorithm based on prediction of short-term power load. Distribution & Utilization, 2(25): pp. 16-19.
[14]Sehgal, S. , Singh, H. , Agarwal, M. , Bhasker, V. , & Shantanu, (2014). Data analysis using principal component analysis. 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), pp. 45-48, doi: 10.1109/MedCom.2014.7005973.
[15]Chu, D. , Lu, R. , Li, J. , (2018). Optimizing Top- k Multiclass SVM via Semismooth Newton Algorithm. IEEE Transactions on Neural Networks and Learning Systems ( Volume: 29 , pp. 6264 - 6275 ), IEEE.
[16]Chen, K. ,(2019). Indirect PCA Dimensionality Reduction Based Machine Learning Algorithms for Power System Transient Stability Assessment. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), IEEE.
[17]Björn Waske, Sebastian van der Linden, Jón Atli Benediktsson, Andreas Rabe, Patrick Hostert, (2010). Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing ( Volume: 48 , pp. 2880 - 2889 ), IEEE.
[18]S. Randive Vishal, Katkar Omkar Prataprao, Nashte Adarsh Pravin, A. Rammohan, (2017). Investigation of effect of air filter clogging on performance and emissions from engine. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), IEEE.
[19]田文國、葉榮華、哈子銘 (2009)。輪機當值與管理(第十二章,頁11-22)。 基隆市:田文國。
[20]Csbc corporation taiwan department of design, (2019). FOR WORKING.
[21]Csbc corporation taiwan department of design, (2020). FOR WORKING.
[22]翁澤民(2000)。船舶柴油機故障診斷仿真係統研究。計算機仿真。
[23]呂傳曾、鄭書修、吳基榮、黃道祥、郭錦榮、方福樑(2006)。船舶柴油機。臺北市:呂傳曾。
[24]ABS RULES FOR BUILDING AND CLASSING MARINE VESSELS, (2021). pp. 613
[25]Tri Oktaviana Putri, Rahmadwati, Bambang Siswojo, (2014). Temperature control of liquid egg pasteurization system using PLC (programmable logic controller) siemens simatic S7-200 and HMI (human machine interface) simatic HMI panel. 2014 Electrical Power, Electronics, Communicatons, Control and Informatics Seminar (EECCIS),2014,IEEE
[26]Sarfraz Ali Quadri, Swapneel R. Zende, Dhananjay R. Dolas. , (2014). Reliability Estimation using Fault Tree Analysis Method. International Journal of Engineering Research Volume No.3 Issue No: Special 1.
[27]Mohammad Sadegh Javadi, Azim Nobakht, Ali Meskarbashee, (2011). Fault Tree Analysis Approach in Reliability Assessment of Power System, International Journal of Multidisciplinary Sciences and Engineering.
[28]Bollen M. H. J. , (2001). Effects of adverse weather and aging on power system reliability, IEEE Trans. Ind. Appl.
[29]Wold, S. , Esbensen, K. , Gelasi, P. , (1987). Principle Components Analysis. Chem. Intell. Lab. Syst,pp. 37-46.
[30]Skoundrianos, E. N. , Tzafestas, S. G. ,(2002). Fault diagnosis in via local neural networks [J]. Mathematics and Computers in Simulation, pp. 169-180.
[31]韓曉靜(2008)。基於小波變換與神經網絡的電力電子電路故障診斷研究。中國。
[32]Wang, J. P. ,(2002). Fault Diagnosis Technology Based on Neural Network Multisensor Data Fusion. Journal of Mechanical Science and Technology. 21(1), pp. 127-130.
[33]Bishop, Ch. M. , (1995). Neural networks for pattern recognition. Oxford University Press, Oxford, New York, pp. 164-177.
[34]石靈丹、槐博超、馬修真(2009)。RBF神經網絡在柴油機燃油系統故障診斷中的應用研究。船電技術,18-22。
[35]Chaudhari, N. S. , Tiwari, A. ,Thomas, J. ,(2008). Performance evaluation of SVM based semi-supervised classification algorithm. 2008 10th International Conference on Control, Automation, Robotics and Vision, IEEE.
[36]Hu, Y. Z. , Wang, W. X. , Liu, H. , Liu, L. Q. , (2019). Robotic Tracking Control with Kernel Trick-based Reinforcement Learning. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE.
[37]M‘hamed Bilal Abidine, Nawel Yala;Belkacem Fergani, Laurent Clavier, (2014). Soft margin SVM modeling for handling imbalanced human activity datasets in multiple homes. 2014 International Conference on Multimedia Computing and Systems (ICMCS), IEEE.
[38]Barabino, N. , Pallavicini, M. , Petrolini, A. , et al. ,(1999). Support vector machines vs multi-layer perceptrons in particle identification. Verleysen M. Processdings ESANN, Brussels: Dfactro, pp. 257-262.
[39]Bartlett, P. L. , Shawe-Teylor, J. , (1999). Generalization performance of support vector machines and other pattern classifiers. Scholkopf B, Burges C.J.C., Smola A.J., Advances in Kernel Methods-Support Vector Learning, Cambridge: MIT Press , pp. 43-54.
[40]Scholkof, B. , Mika, S. , Burges, C.J.C. , et al. ,(1999). Input space versus feature space in kernel -based methods. IEEE Trans Neural Networks, 10(5), pp.1000-1017.
[41]Drucker, H. , Wu, D. , Vipnik, V. N. ,(1999). Support vector machines for spam categorization. IEEE Trans Neural Networks, 10(5), pp. 1048-1054.
[42]Smola, A. , Scholkopf, B. ,(1998). A tutorial on support vector regression. Neuro COLT: Technical Report 19.
[43]Vapnik, V. N. , (1987). Support vector method for function approximation. regression, and signal processing. In: Proc. NIPS’9, San.
[44]Watanabe, H. , Katagiri, S. , Yamada, K. , McDermott, E. , Nakamura , A. , Watanabe, S. ,(2010). Minimum Error Classification with geometric margin control. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE.
[45]Chen, S. , Harris, C. J. ,(2000). Design of the optimal separating hyperplane for the decision feedback equalizer using support vector machines. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), IEEE.
[46]李航,(2012)。統計學習方法。清華大學出版社,中國。
[47]Han, X. M. , Xu X. Y. , Xie K. M. , (2010). An approach of Support Vector Machine to improve the training speed. 2010 International Conference On Computer Design and Applications, IEEE.
[48]Li, H. , Zhang, Y.X. , (2009). An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA. 2009 9th International Conference on Electronic Measurement & Instruments, IEEE.
[49]Wu, C. M. , Wang, X. D. , Bai, D. Y. , Zhang, H. D. , (2009). Fast Incremental Learning Algorithm of SVM on KKT Conditions. 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, IEEE.
[50]Lupu, D. , Necoara, I. ,(2018). Primal and dual first order methods for SVM: applications to driver monitoring. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), IEEE.
[51]Wu, D. , Cao, F. L. , (2009). Learning rates for SVM classifiers with polynomial kernels. 2009 International Conference on Machine Learning and Cybernetics, IEEE.
[52]Bong, K. , Kim, G. , Yoo, H. J. , (2014). Energy-efficient Mixed-mode support vector machine processor with analog Gaussian kernel. Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, IEEE.
[53]Qu, L. P. , Zhou, H. H. , Liu, C. J. , Lu, Z. , (2018). Study on Multi-RBF-SVM for Transformer Fault Diagnosis. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), IEEE.
[54]Hsu, C. W. , Chang, C. C. , Lin, C. J. , (2003). A practical guide to support vector classification. Technical Report,University of National Taiwan,Department of Computer Science and Information Engineering.
[55]Li, C. H. , Lin, C. T. , Kuo, B. C. , Chu, H. S. , (2010). An automatic method for selecting the parameter of the RBF kernel function to support vector machines. International Geoscience and Remote Sensing Symposium(IGARSS), IEEE, pp. 836-839.
[56]謝佩鈞,(2015)。Full Bandwidth RBF核函數參數自動挑選法與其在特徵選取之應用。國立臺中教育大學教育資訊與測驗統計研究所碩士論文,12-14。[57]曾琨勝,(2020)。船用柴油機之故障診斷系統。國立高雄科技大學電機工程系碩士班碩士論文。