|
[1]E. E. Loebner “Subhistories of the Light Emitting Diode,” J. selected topics in quantum electronics, 7, 675-699, 1976. [2]L. Gu, X. Ruan, M. Xu, and K. Yao, “Means of eliminating electrolytic capacitor in AC/DC power supplies for LED lightings,” IEEE Trans. Power Electronic, 24, 1399-1408, 2009. [3]X. Ruan, B. Wang, K. Yao, and S. Wang, “Optimum injected current harmonics to minimize peak-to-average ratio of LED current for electrolytic capacitor-less AC-DC drivers,” IEEE Trans. Power Electronic, 26, 1820-1825, 2011. [4]M. Arias, D. G. Lamar, J. Sebastian, D. Balocco, and A. A. Diallo, “High efficiency LED driver without electrolytic capacitor for street lighting,” IEEE Trans. Ind. Appl., 49, 127-137, 2013. [5]Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGC LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electronic, 56, 4862-4871, 2009. [6]R. Simpson, Lighting Control: Technology and Applications. Boston, MA: Focal Press, 2003. [7]J. M. Zhou and W. Yan, “Experimental investigation on the performance characteristics of white LEDs used in illumination application,” Proc. PESC2007, Orlando, 1436-1440, 2007. [8]J. H. Cheng, C. K. Liu, Y. L. Chao, and R. M. Tain, “Cooling performance of silicon-based thermoelectric device on high power LED,” Proc. 24th Int. Conf. Thermoelectrics, Clemson, 53-56, 2005. [9]S. Buso, G. Spiazzi, M. Meneghini, and G. Meneghesso, “Performance degradation of high-brightness light emitting diodes under DC and pulsed bias,” IEEE Trans. Device Mater. Rel., 8, 312-322, 2008. [10]Uxeon Power Light Source, Data Sheet DS51. Available: http:// www.philipslumileds.com/pdfs/DS51.pdf [11]Y.-K. Lo, K.-H. Wu, K.-J. Pai, and H.-J. Chiu, “Design and implementation of RGC LED drivers for LCD backlight modules,” IEEE Trans. Ind. Electronic, 56, 4862-4871, 2009. [12]Y. Qin, H. Chung, D. Y. Lin, and S. Y. R. Hui, “Current source ballast for high power lighting emitting diodes without electrolytic capacitor,” in Proc. IEEE 34th Annu. Conf. Ind. Electronic, 1968-1973, 2008. [13]E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi, “Transcending the replacement paradigm of solid-state lighting,” Rep. Prog. Phys., 69, 3069-30672, 2006. [14]R. Haitz and J. Y. Tsao, “Solid‐state lighting: ‘The case’ 10 years after and future prospects,” Phys. Status Solidi A, 208, 17-29, 2011. [15]B. A. Aswathy, P. P. Rao, and V. G. Suchithra, “New perovskite type orange red emitting phosphors, SrGd0.5Nb0.5O3:xEu3+ for WLED applications” Mater. Lett., 229, 182-184, 2018. [16]X. Dong, Y. Pan, D. Li, H. Lian, and J. Lin, “A novel red phosphor of Mn4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications,” Cryst. Eng. Comm., 20, 5641-5646, 2018. [17]H. Chun, S. Rajbhandari, G. Faulkner, and D. O’Brien, “Effectiveness of blue-filtering in WLED based indoor Visible light communication,” IEEE 3rd IWOW, 60-64, 2014. [18]R. Zhang, H. Lin , Y. L. Yu, D. Q. Chen, J. Xu, and Y. S. Wang, “ A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-inglass” Laser Photonics Rev., 8, 158-164, 2014. [19]T. Nakanishi and S. Tanabe, “Preparation and luminescence properties of glass ceramics precipitated with M2MgSi2O7: Eu2+ (M Sr, Ca) phosphor for white light source” IEEE J. Sel. Top. Quantum. Electronics, 15, 1171-1180, 2009. [20]L. Y. Chen, W. C. Cheng, C. C. Tsai, Y. C. Huang, Y. S. Lin, and W. H. Cheng, “High performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+: YAG inter-diffusion” Opt. Mater. Express, 4, 121-128, 2014. [21]J. H. Oh, J. R. Oh, H. K. Park Y.-G. Sung, and Y. R. Do, “New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs,” Opt. Express, 19, A270-A279, 2011. [22]Y. Pan, M. Wu, and Q. Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods,” J. Phy. Chem. Solid, 65, 845-845, 2004. [23]S. Thomson, “Time-Resolved Electroluminescence Spectroscopy of a White Light Emitting Diode,” Edinburgh Instuments Ltd., Report number: AN_P49, 2018. [24]K. Bando, Y. Noguchi, K. Sakano, and Y. Shimizu, Tech. Digest, Phosphor Res. Soc. 264th meeting, 5-14, 1996. [25]L. A. Bentolila, “Photoluminescent quantum dots in imaging, diagnostics and therapy,” Applications of Nanoscience in Photomedicine, 77-104, 2015. [26]S. Baskoutas and A. F. Terzis, “Size-dependent band gap of colloidal quantum dots,” J. Appl. Phys., 99, 013708-1-013708-4, 2006. [27]M. F. Foda, L. Huang, F. Shao, and H.-Y. Han, “Biocompatible and Highly Luminescent Near-Infrared CuInS2/ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging,” ACS Appl. Mater. Interfaces, 6, 2011-2017, 2014. [28]X. Tang, K. Yu, Q. Xu, E. S. G. Choo, G. K. L. Goh, and J. Xue, “Synthesis and characterization of AgInS2-ZnS heterodimers with tunable photoluminescence,” J. Mater. Chem., 21, 11239-11243, 2011. [29]J. Zhang, R. Xie, and W. Yang, “A Simple Route for Highly Luminescent Quaternary Cu-Zn-In-S Nanocrystal Emitters,” Chem. Mater., 23, 3357-3361, 2011. [30]A. Guchhait and A. J. Pal, “Copper-Diffused AgInS2 Ternary Nanocrystals in Hybrid Bulk-Heterojunction Solar Cells: Near-Infrared Active Nanophotovoltaics” ACS Appl. Mater. Interfaces, 5, 4181-4189, 2013. [31]L. A. Bentolila, “5-Photoluminescent quantum dots in imaging, diagnostics and therapy,” Applications of Nanoscience in Photomedicine, 77-104, 2015. [32]S. Izotov, A. Sitdikov, V. Soldatkin, V. Tuev and A. Olisovets, “Study of Phosphors for White LEDs,” Procedia Technology, 18, 14-18, 2014. [33]W. Chen, K. Wang, J. Hao, D. Wu, S. Wang, J. Qin, C. Li, and W. Cao, “Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots,” Part. Part. Syst. Charact., 32, 922-927, 2015. [34]M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmuller, “Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot-Salt Mixed Crystals,” ACS Appl. Mater. Interfaces, 7, 23364-23371, 2015. [35]A. D. P. Leach and J.E. Macdonald, “Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin,” J. Phys. Chem. Lett., 7, 572-583, 2016. [36]M. Ando, T. Kamimura, K. Uegaki, V. Biju and Y. Shigeri, “Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots,” Microchim Acta, 183, 3019-3024, 2016. [37]B. Huang, Q. Dai, N. Zhou, Q. Jiang, F. Shi, H. Wang, H. Zhang, C. Liao, Y. Cui, and J. Zhang, “Bicolor Mn-doped CuInS2/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index,” J. Appl. Phy., 116, 094303-1-094303-5, 2014. [38]H. S. Jang, H. Y. Sung, S. W. Kim, J. Y. Han, S.-G. Lee, and D. Y. Jeon, “White Light-Emitting Diodes with Excellent Color Rendering Based on Organically Capped CdSe Quantum Dots and Sr3SiO5:Ce3+Phosphors,” Adv. Mater., 20, 2696-2702, 2008. [39]T. Xuan, X. Yang, S. Lou, J. Huang, Y. Liu, J. Yu, H. Li, K.-L. Wong, C. Wang, and J. Wang, “Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes,” Nanoscale, 9, 15286-15290, 2017. [40]D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications,” A Review Materials, 3, 2260-2345, 2010. [41]W. van der Stam, A. C. Berends, and C. de Mello Donega, “Prospects ́ of Colloidal Copper Chalcogenide Nanocrystals,” Chem. Phys. Chem., 17, 559-581, 2016. [42]Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, and J. I. Hahm, “Employing Heavy Metal Free Colloidal Quantum Dots in Solution-Processed White Light Emitting Diodes,” Nano Lett., 11, 329-32, 2011. [43]X. Y. Yang, D. W. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. L. Zhao, H. V. Demir, and X. W. Sun, “Full Visible Range Covering InP/ ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes,” Adv. Mater., 24, 4180-4185, 2012. [44]X. Y. Zhang, Y. Zhang, Y. D. Wang, S. Kalytchuk, S. V. Kershaw, Y. H. Wang, P. Wang, T. Q. Zhang, Y. Zhao, and H. Z. Zhang, “Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes,” ACS Nano, 7, 11234-11241, 2013. [45]W. Y. Ji, P. T. Jing, W. Xu, X. Yuan, Y. Wang, J. L. Zhao, and A. K. Y. Jen, “High Color Purity ZnSe/ZnS Core/Shell Quantum Dot Based Blue Light Emitting Diodes with an Inverted Device Structure,” Appl. Phys. Lett., 103, 053106, 2013. [46]B. Niesen and B. P. Rand, “Thin Film Metal Nanocluster Light Emitting Devices,” Adv. Mater., 26, 1446-1449, 2014. [47]H. C. Wang, H. Zhang, H. Y. Chen, H. C. The, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Lui, “Cadmium‐Free InP/ZnSeS/ZnS Heterostructure‐Based Quantum Dot Light‐Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cd m−2,” Adv. Sci., 13, 1603962 (1)-(7), 2017. [48]B. K. Chen, H. Z. Zhong, W. Zhang, Z. A. Tan, Y. F. Li, C. L. Yu, T. Y. Zhai, Y. Bando, S. Y. Yang, and B. S. Zou, “Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance,” Adv. Funct. Mater., 22, 2080-2088, 2012. [49]J.-H. Kim and H. Yang, “High-Efficiency Cu-In-S Quantum-Dot-Light-Emitting Device Exceeding 7%,” Chem. Mater., 28, 6329-6335, 2016. [50]P.-H. Chuang, C. C. Lin, and R.-S. Liu, “Emission-Tunable CuInS2/ZnS Quantum Dots: Structure, Optical Properties, and Application in White Light-Emitting Diodes with High Color Rendering Index,” ACS Appl. Mater. Interfaces, 6, 15379-15387, 2014. [51]G. Lv, W. Guo, W. Zhang, T. Shang, S. Li, and S. Chen, “Near-Infrared Emission CuInS/ZnS Quantum Dots: All-in-One Theranostic Nanomedicines with Intrinsic Fluorescence/Photoacoustic Imaging for Tumor Phototherapy,” ACS Nano, 10, 9637-9645, 2016. [52]A. C. Berends, W. V D. Stam, J. P. Hofman, E. Bladt, J. D. Meeldijk, S. Bals, and C. D. M. Donega, “Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals” Chem. Mater., 30, 2400-2413, 2018. [53]S. Chen, X. Gong, A. Walsh, and S.-H. Wei, “Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds,” Phys. Rev. B: Condens. Matter Mater. Phys, 79, 165-211, 2009. [54]C. Pu, H. Qin, Y. Zhou, J. Wang, and P. Peng, “Synthetic Control of Exciton Behavior in Colloidal Quantum Dots,” J. Am. Chem. Soc., 139, 3302-3311, 2017. [55]Y. Chen, M. Zheng, Y. Xiao, H. Dong, H. Zhang, J. Zhuang, H. Hu, B. Lei, and Y. Liu, “A self-quenching-resistance carbon dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission,” Adv. Mater., 28, 312-318, 2016. [56]E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science, 308, 1274-1278, 2005. [57]H. C. Yoon, J. H. Oh, M. Ko, H. Yoo, and Y. R. Do, “Synthesis and Characterization of Green Zn–Ag–In–S and Red Zn–Cu–In–S Quantum Dots for Ultrahigh Color Quality of Down-Converted White LEDs,” ACS Appl. Mater. Interfaces, 7, 7342-7350, 2015. [58]Q. Dai, X. Zhang, S. Wang, B. Huang, J. Zhang, and Y. Cui, “Strong two-photon absorption of CuInS2/ZnSquantum dots with various Cu/In ratios” Superlattices and Microstructures, 84, 2015. [59]D. Pan, D. Weng, X. Wang, Q. Xiao, W. Chen, C. Xu, Z. Yang, and Y. Lu, “Alloyed semiconductor nanocrystals with broad tunable band gaps,” Chem. Commun., 9637-9645, 2016. [60]M. Xu, J. Zai, Y. Yuan, and X. Qian, “Band gap-tunable (CuIn)xZn2(1−x)S2 solid solutions: preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals,” J. Mater. Chem., 22, 23929-23934, 2012. [61]B. Chen, H. Zhong, W. Zhang, Z. A. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, and B. Zou, “Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance,” Adv. Funct. Mater., 22, 2081-2088, 2014. [62]C. Pu, H. Qin, Y. Zhou, J. Wang, and P. Peng, “Synthetic Control of Exciton Behavior in Colloidal Quantum Dots,” J. Am. Chem. Soc., 139, 3302-3311, 2017. [63]N. Khemiri and M. Kanzari, “A comparative study of the properties of thermally evaporated CuIn2n+1S3n+2 (n = 0, 1, 2 and 3) thin films,” Thin Solid Films, 519, 7201-7206, 2011. [64]E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science, 308, 1274-1278, 2005. [65]K. Jang, Y. H. Won, and D. Jeon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Appl. Phys. B. Lasers. Opt., 95, 715-720, 2009. [66]P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” J. Appl. Phys. A. Mater. Sci. Process, 64, 417-418, 1997. [67]M. F. Foda, L. Huang, F. Shao, and H.-Y. Han, “Biocompatible and Highly Luminescent Near-Infrared CuInS2/ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging,” ACS Appl. Mater. Interfaces, 6, 2011-2017, 2014. [68]H. Moon, C. Lee, W. Lee, J. Kin, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light‐Emitting Diodes for Display Applications,” Adv. Mater., 1084294-1-1084291-14, 2019. [69]T. Watanabe, Y. Iso, T. Isobe, and H. Sasaki, “P Photoluminescence color stability of green-emitting InP/ZnS core/shell quantum dots embedded in silica prepared via hydrophobic routes,” RCS Adv., 8, 25526-25523, 2013. [70]K. gugula, A. Szydlo, L. Stegemann, C. A. Strassert, and M. Bredol, “Photobleaching-resistant ternary quantum dots embedded in a polymer-coated silica matrix,” J. Mater. Chem. C, 4, 5263-5269, 2016. [71]W.-S. Song, J.-H. Kim, and H. Yang, “Silica-embedded quantum dots as downconverters of light-emitting diode and effect of silica on device operational stability,” Mater. Lett., 111, 104-107, 2013. [72]C. Yoon, T. Kim, M.-H. Shin, Y.-G. Song, K. Shin, Y.-J. Kim, and K. Lee, “Highly luminescent and stable white light-emitting diodes created by direct incorporation of Cd-free quantum dots in silicone resins using the thiol group,” J. Mater. Chem. C, 3, 6908-6915, 2015. [73]J. Park and S.-W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem., 21, 3745-3750, 2011. [74]D. E. Nam, W. S. Song, and H. Yang, “Non-injection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties,” J. Colloid Interface Sci., 361, 491-496, 2011. [75]R. J. Xie and N. Hirosaki, “2-phopspho-converted white light-emitting diodes using oxynitride-nitride phosphors,” Appl. Phys. Lett., 90, 191101, 2007. [76]Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D. Appl. Phy., 43, 354002, 2010. [77]M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce Mechanisms of Growth and Epoxy-Encapsulation” ACS Chem. Mater., 21, 1536-1542, 2009. [78]N. Narendran and Y. M. Gu, “Life of LED-Based White Light Sources,” J. Disp. Technol., 1, 167-171, 2005. [79]D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, “Quantum Dots and Their Multimodal Applications: A Review,” A Review Materials, 3, 2260-2345, 2010. [80]C. De Mello Donega, “Synthesis and properties of colloidal heteronanocrystals,” Chem. Soc. Rev., 40, 1512-1546, 2011. [81]A. Zora, G. P. Triberis, and C. Simserides, “Near-Field Optical Properties of Quantum Dots,” Applications and Perspectives,” Recent Pat. Nanotech., 5, 188-224, 2011. [82]T. J. Bukowski and J. H. Simmons, “Quantum Dot Research: Current State and Future Prospects,” Crit. Rev. Solid State Mat. Sci., 27, 119-142, 2002. [83]L. Manna, E. C. Scher, and A. P. Alivisatos, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals,” J. Am. Chem. Soc., 122, 12700-12706, 2000. [84]K. Wu, Y. Du, H. Tang, Z. Chen, and T. Lian, “Efficient Extraction of Trapped Holes from Colloidal CdS Nanorods,” J. Am. Chem. Soc., 137, 10224-10230, 2015. [85]N. Mishra, W.-Y. Wu, B. M. Srinivasan, R. Hariharaputran, Y.-W. Zhang, and Y. Chan, “Continuous Shape Tuning of Nanotetrapods: Toward Shape-Mediated Self-Assembly,” Chem. Mater., 28, 1187-1195, 2016. [86]J. Cheng, J. Hao, H. Liu, J. Li, J. Li, X. Zhu, X. Lin, K. Wang, and T. He, “Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence,” ACS Nano, 12, 5341-5350, 2018. [87]J. Zhou, C. Pu, T. Jiao, X. Hou, and X. Peng, “A Two-Step Synthetic Strategy toward Monodisperse Colloidal CdSe and CdSe/CdS Core/Shell Nanocrystals,” J. Am. Chem. Soc., 138, 6475-6483, 2016. [88]S. O. Oluwafemi, N. Revaprasadu, and A. J. Ramirez, “A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles,” J. Cryst. Growth, 310, 3230-3234, 2008. [89]J. Ma, M. Liu, Z. Li, and L. Li, “Synthesis of highly photo-stable CuInS2/ZnS core/shell quantum dots,” Opt. Mater., 47, 56-61, 2015. [90]J. Lee and C. S. Han, “Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor,” Nanoscale Res. Lett., 9, 78, 2014. [91]A. Sitt, A. Salant, G. Menagen, and U. Banin, “Highly emissive nano rod-in-rod heterostructures with strong linear polarization,” Nano Lett., 11, 2054-2060, 2011. [92]H. Chen, S.M. Yu, D. W. Shin, and J. B. Yoo, “Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles,” Nanoscale Res. Lett., 5, 217-223, 2009. [93]L Li, T. J. Daou, I. Texier, T. K. C. Tran, Q. L. Nguyen, and P. Reiss, “Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging,” Chem. Mater., 21, 2422-2429, 2009. [94]C. Li, M. Ando, H. Enomoto, and N. Murase, “Highly Luminescent Water-Soluble InP/ZnS Nanocrystals Prepared via Reactive Phase Transfer and Photochemical Processing,” J. Phys. Chem. C, 112, 20190-20199, 2008. [95]S. Jun, J. Lee and E. Jang, “Highly Luminescent and Photostable Quantum Dot-Silica Monolith and Its Application to Light-Emitting Diodes,” ACS Nano, 7, 1472-1477, 2013. [96]H. Woo, J. Lim, Y. Lee, J. Sung, H. Shin, J. M. Oh, M. Choi, H. Yoon, W. K. Bae, and K. Char, “Robust, processable, and bright quantum dot/organosilicate hybrid films with uniform QD distribution based on thiol-containing organosilicate ligands,” J. Mater. Chem. C, 1, 1983-1989, 2013. [97]K. Khare, S. Singh, and K. K. Kushwah, “Synthesis, characterizations & applications of II-VI quantum dots: a review,” Nano Trends-A J. Nano Technol. Appl., 20, 36-38, 2019. [98]D. E. Nam, W. S. Song, and H. Yang, “Non-injection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties,” J. Colloid Interface Sci., 361, 491-496, 2011. [99]H. Kim, B.-H. Kwon, M. Suh, D. S. Kang, Y. Kim, and D. Y. Jeon, “Degradation Characteristics of Red Light-Emitting CuInS2/ZnS,” Electrochem. and Solid-State Lett., 14, 55-57, 2011 [100]J. Park and S.-W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem., 21, 3745-3750, 2011. [101]D.-E. Nam, W.-S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem., 21, 18220-18226, 2011. [102]W.-S. Song and H. Yang, “Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots,” Chem. Mater., 24, 1961-1967, 2012. [103]W.-S. Song, E.-P. Wang, J.-H. Kim, H. S. Jang, and H. Yang, “Unique oxide overcoating of CuInS2/ZnS core/shell quantum dots with ZnGa2O4 for fabrication of white light-emitting diode with improved operational stability,” J. Nanopart. Res., 15, 1-10, 2013. [104]J. Lee and C. S. Han, “Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor,” Nanoscale Res. Lett., 9, 78, 2014. [105]W. J. Chiang, S. C. Shei, and L. W. Huang, “Study of temperature- and time-resolved luminescence of CuInS2-ZnS quantum dots synthesized by one-pot method,” In Proceedings of the 2015 International Symposium on Next-Generation Electronics. [106]M. Fu, W. Luan, S.-T. Tu, and L. Mleczko, “Green Synthesis of CuInS2/ZnS Nanocrystals with High Photoluminescence and Stability,” J. Nanomater., 1-9, 2015. [107]K. Gugula, L. Stegemann, P. J. Cywi ´nski, C. A. Strassert, and M. Bredol, “Facile surface engineering of CuInS2/ZnS quantum dots for LED down-converters,” RSC Adv., 6, 10086-10093, 2016. [108]Z. S. Xu, J. H. Yan, C. Xu, C. Cheng, C. Jiang, C. Liu, and J. R. Qiu, “Tunable near-infrared emission and fluorescent lifetime of PbSe quantum dot-doped borosilicate glass,” J. Alloys Compd., 711, 58-63, 2017. [109]I. S. Sohn, S. Unithrattil, and W. B. Im, “Stacked Quantum Dot Embedded Silica Film on a Phosphor Plate for Superior Performance of White Light-Emitting Diodes,” ACS Appl. Mater. Interfaces, 6, 5744-5748, 2014. [110]W.-S. Song, J.-H. Kim, and H. Yang, “Silica-embedded quantum dots as downconverters of light-emitting diode and effect of silica on device operational stability,” Mater. Lett., 111, 104-107, 2013. [111]C. Wada, Y. Iso, T. Isobe, and H. Sasaki, “Preparation and photoluminescence properties of yellow-emitting CuInS2/ZnS quantum dots embedded in TMAS-derived silica,” RCS Adv., 7, 7936-7943, 2017. [112]T. Jiang, M. Shen, P. Dai, M. Wu, X. Yu, G. Li, X. Xu, and H. Zeng, “Cd-free Cu-Zn-In-S/ZnS Quantum Dots@SiO2 Multiple Cores Nanostructure: Preparation and Application for White LEDs,” Nanotechnology, 114744, 2017. [113]Y.-K. Kim, Y.-S. Cho, K. Chung, and C.-J. Choi, “Photoluminescence of CuInS2 nanocrystals: Effect of surface modification,” Nanophotonic Materials VIII, 8094, 80940I-1-80940I-6, 2011. [114]J. Park and S.-W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem., 21, 3745-3750, 2011. [115]H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata S. Otsuka-Yao-Matsuo, M. Miyazaki, and H. Maeda, “Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System,” Chem. Mater, 18, 3330-3335, 2006. [116]E.-P. Jang, W.-S. Song, K.-H. Lee, and H. Yang, “Preparation of a photo-degradation- resistant quantum dot–polymer composite plate for use in the fabrication of a high-stability white-light-emitting diode,” Nanotechnology, 24, 045607, 2013. [117]A. Singh, C. Coughlan, D. J. Milliron, and K. M. Ryan, “Solution Synthesis and Assembly of Wurtzite-Derived Cu-In-Zn-S Nanorods with Tunable Composition and Band Gap,” Chem. Mater., 27, 1517-1523, 2015. [118]Y. Zhu, Z. Li, M. Chen, H.M. Cooper, Q.G.M. Lu, and Z. P. Xu, “Synthesis of Robust Sandwich-Like SiO2@CdTe@SiO2 Fluorescent Nanoparticles for Cellular Imaging,” Chem. Mater., 24, 421-423, 2012. [119]C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots,” Adv. Mater., 2016. [120]S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, Non‐Cytotoxic, Silica‐Coated CdSe Quantum Dots with Efficient Photoluminescence,” Adv. Mater., 17, 1620-1625, 2005.
|