參考文獻(一)
1.Cejka, C., et al., Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage, in Sci Rep. 2017.
2.McMonnies, C.W., The potential role of neuropathic mechanisms in dry eye syndromes. J Optom, 2017. 10(1): p. 5-13.
3.Tan, G., et al., Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Scientific Reports, 2018. 8(1): p. 17828.
4.Mergler, S. and U. Pleyer, The human corneal endothelium: new insights into electrophysiology and ion channels. Prog Retin Eye Res, 2007. 26(4): p. 359-78.
5.Jiang, P., et al., Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J Neuroinflammation, 2017. 14(1): p. 239.
6.Zhao, G.R., et al., Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol, 2008. 46(1): p. 73-81.
7.Zhang, L.Q., et al., [Drug dynamics research of salvia miltiorrhiza in rabbit plasma and aqueous humor after intravenous injection]. Zhonghua Yan Ke Za Zhi, 2013. 49(9): p. 835-40.
8.Ma, L., L. Tang, and Q. Yi, Salvianolic Acids: Potential Source of Natural Drugs for the Treatment of Fibrosis Disease and Cancer. Front Pharmacol, 2019. 10.
9.Teng, M.C., et al., Danshensu Decreases UVB-Induced Corneal Inflammation in an Experimental Mouse Model via Oral Administration. Curr Eye Res, 2018. 43(1): p. 27-34.
10.Pascolini, D. and S.P. Mariotti, Global estimates of visual impairment: 2010. Br J Ophthalmol, 2012. 96(5): p. 614-8.
11.Tsai, C.Y., et al., The current status of visual disability in the elderly population of Taiwan. Jpn J Ophthalmol, 2005. 49(2): p. 166-72.
12.Liou, J.C., et al., UV-blocking spectacle lens protects against UV-induced decline of visual performance, in Mol Vis. 2015. p. 846-56.
13.Nita, M. and A. Grzybowski, The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev, 2016. 2016.
14.Whitcher, J.P., M. Srinivasan, and M.P. Upadhyay, Corneal blindness: a global perspective, in Bull World Health Organ. 2001. p. 214-21.
15.Oliva, M.S., T. Schottman, and M. Gulati, Turning the tide of corneal blindness, in Indian J Ophthalmol. 2012. p. 423-7.
16.衛生福利部中醫司藥, 臺灣中藥典第三版. 2018.
17.Ma, X., et al., Salvianolic Acid B Ameliorates Cognitive Deficits Through IGF-1/Akt Pathway in Rats with Vascular Dementia. Cell Physiol Biochem, 2017. 43(4): p. 1381-1391.
18.Wang, S.X., et al., Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem Res, 2010. 35(7): p. 1029-37.
19.Wang, W. and W. Hu, Salvianolic acid B recovers cognitive deficits and angiogenesis in a cerebral small vessel disease rat model via the STAT3/VEGF signaling pathway. Mol Med Rep, 2018. 17(2): p. 3146-3151.
20.Meek, K.M. and C. Knupp, Corneal structure and transparency, in Prog Retin Eye Res. 2015. p. 1-16.
21.DelMonte, D.W. and T. Kim, Anatomy and physiology of the cornea. J Cataract Refract Surg, 2011. 37(3): p. 588-98.
22.Sridhar, M.S., Anatomy of cornea and ocular surface, in Indian J Ophthalmol. 2018. p. 190-4.
23.Torricelli, A.A.M. and S.E. Wilson, Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res, 2014. 0: p. 151-60.
24.Chen, J., et al., Descemet’s Membrane Supports Corneal Endothelial Cell Regeneration in Rabbits, in Sci Rep. 2017.
25.Eghrari, A.O., S.A. Riazuddin, and J.D. Gottsch, Overview of the Cornea: Structure, Function, and Development. Prog Mol Biol Transl Sci, 2015. 134: p. 7-23.
26.Ho, J.H., et al., Protection of thymosin beta-4 on corneal endothelial cells from UVB-induced apoptosis. Chin J Physiol, 2010. 53(3): p. 190-5.
27.Ho, Y.R., C.H. Lin, and C.Y. Kuo, The protective effect of simvastatin against ultraviolet B-induced corneal endothelial cell death. Indian J Ophthalmol, 2018. 66(8): p. 1080-1083.
28.Delic, N.C., et al., Damaging Effects of Ultraviolet Radiation on the Cornea. Photochem Photobiol, 2017. 93(4): p. 920-929.
29.Black, A.T., et al., UVB light regulates expression of antioxidants and inflammatory mediators in human corneal epithelial cells. Biochem Pharmacol, 2011. 81(7): p. 873-80.
30.Lombardo, M., et al., Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. J Cataract Refract Surg, 2015. 41(2): p. 446-59.
31.Cejka, C., S. Kubinova, and J. Cejkova, Trehalose in ophthalmology. Histol Histopathol, 2019: p. 18082.
32.Chen, S.J., et al., Inhibition of Ultraviolet B-Induced Expression of the Proinflammatory Cytokines TNF-alpha and VEGF in the Cornea by Fucoxanthin Treatment in a Rat Model. Mar Drugs, 2016. 14(1): p. 13.
33.Golu, A., et al., The effect of ultraviolet radiation on the cornea - experimental study. Rom J Morphol Embryol, 2013. 54(4): p. 1115-20.
34.Malozhen, S.A., S.V. Trufanov, and D.A. Krakhmaleva, [Pterygium: etiology, pathogenesis, treatment]. Vestn Oftalmol, 2017. 133(5): p. 76-83.
35.Chen, B.Y., et al., Dietary zerumbone prevents mouse cornea from UVB-induced photokeratitis through inhibition of NF-κB, iNOS, and TNF-α expression and reduction of MDA accumulation, in Mol Vis. 2011. p. 854-63.
36.Muresan, S., et al., Histological findings in the Wistar rat cornea following UVB irradiation. Rom J Morphol Embryol, 2013. 54(2): p. 247-52.
37.Chen, S.J., et al., Inhibition of Ultraviolet B-Induced Expression of the Proinflammatory Cytokines TNF-α and VEGF in the Cornea by Fucoxanthin Treatment in a Rat Model, in Mar Drugs. 2016.
38.Su, C.Y., et al., Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med, 2015. 13(3): p. 163-82.
39.Li, M.H., et al., Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol, 2008. 120(3): p. 419-26.
40.Wu, Y.B., et al., Constituents from Salvia species and their biological activities. Chem Rev, 2012. 112(11): p. 5967-6026.
41.Yu, J., et al., Danshensu protects isolated heart against ischemia reperfusion injury through activation of Akt/ERK1/2/Nrf2 signaling. Int J Clin Exp Med, 2015. 8(9): p. 14793-804.
42.Wang, Y., et al., Salvia Miltiorrhiza Bge.f.alba Ameliorates the Progression of Monocrotaline-Induced Pulmonary Hypertension by Protecting Endothelial Injury in Rats. Tohoku J Exp Med, 2015. 236(2): p. 155-62.
43.Yang, R.X., et al., Danshensu protects vascular endothelia in a rat model of hyperhomocysteinemia. Acta Pharmacol Sin, 2010. 31(10): p. 1395-400.
44.ZHU, Q., et al., Salvia miltiorrhiza extracts protect against retinal injury in a rat glaucoma model. 2014.
45.Mao, K., et al., Salvianolic acid A protects retinal pigment epithelium from OX-LDL-induced inflammation in an age-related macular degeneration model. Discov Med, 2017. 23(125): p. 129-147.
46.林思萍, 探討丹參素鈉對於紫外線 B 輻射所造成眼球角膜損傷之保護作用. 中山醫學大學視光學系碩士班學位論文, 2017 p. 1-79.47.Zhu, Q., et al., Salvia miltiorrhiza extracts protect against retinal injury in a rat glaucoma model. Experimental and therapeutic medicine, 2014. 7(6): p. 1513-1515.
48.Liu, X., et al., Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1). Int J Mol Sci, 2016. 17(11).
49.Zhou, L., Z. Zuo, and M.S. Chow, Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol, 2005. 45(12): p. 1345-59.
50.Zhao, Q., et al., The Safety Evaluation of Salvianolic Acid B and Ginsenoside Rg1 Combination on Mice. Int J Mol Sci, 2015. 16(12): p. 29345-56.
51.Cejka, C., et al., Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Sci Rep, 2017. 7(1): p. 18017.
52.Yue, K.K., et al., Danshen prevents the occurrence of oxidative stress in the eye and aorta of diabetic rats without affecting the hyperglycemic state. J Ethnopharmacol, 2006. 106(1): p. 136-41.
53.Liu, X., et al., Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1), in Int J Mol Sci. 2016.
54.Chu, Y.Y., et al., [The protection of hydrogen-rich saline on a rat dry eye model induced by scopolamine hydrobromide]. Zhonghua Yan Ke Za Zhi, 2017. 53(5): p. 363-372.
55.Gao, Z.X., et al., Assessment of DNA Damage and Cell Senescence in Corneal Epithelial Cells Exposed to Airborne Particulate Matter (PM2.5) Collected in Guangzhou, China. Invest Ophthalmol Vis Sci, 2016. 57(7): p. 3093-102.
56.Zernii, E.Y., et al., Mitochondria-targeted antioxidant SKQ1 protects cornea from oxidative damage induced by ultraviolet irradiation and mechanical injury, in BMC Ophthalmol. 2018.
57.Oh, J.Y., et al., Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury, in Proc Natl Acad Sci U S A. 2010. p. 16875-80.
58.Xu, M., et al., Structural characterization of metabolites of salvianolic acid B from Salvia miltiorrhiza in normal and antibiotic-treated rats by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2007. 858(1-2): p. 184-98.
59.Bonanno, J.A., “Molecular Mechanisms Underlying the Corneal Endothelial Pump”. Exp Eye Res, 2012. 95(1): p. 2-7.
60.Feizi, S., Corneal endothelial cell dysfunction: etiologies and management, in Ther Adv Ophthalmol. 2018
參考文獻(二)
1.Luo, Y., et al., Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett, 2004. 363(3): p. 218-23.
2.Lu, M., et al., Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll‐like receptor 4/nuclear factor‐κB signaling pathway. Phytotherapy Research, 2015. 29(4): p. 599-606.
3.Li, L., et al., Astragaloside IV Attenuates Acetaminophen-Induced Liver Injuries in Mice by Activating the Nrf2 Signaling Pathway. Molecules, 2018. 23(8).
4.Gui, D., et al., Astragaloside IV ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NF-kappaB-mediated inflammatory genes expression. Cytokine, 2013. 61(3): p. 970-7.
5.黃舜卿, 人口結構老化下之我國高齡者就業政策探討. 台灣經濟論衡, 2014年7月(vol.12, no.7).
6.劉立文;潘儀聰;游志雲, A Study on Human Factor Engineering for Middle-aged and Older-aged Workers in the Workplace 勞動部勞動及職業安全衛生研究所, 2018.
7.衛生福利部國民健康署婦幼健康組, 衛生福利部國民健康署建議3C產品加註警語行政指導原則. 2015. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=469&pid=177.
8.陳伯易, 黃耆提取物用於緩解視網膜老化及視覺功能重建的機轉及其應用之研究. 科技部專題研究計畫, 2018.
9.衛生福利部社會及家庭署, 兒童及少年福利與權益保障法. 2015. https://www.mohw.gov.tw/cp-2636-21146-1.html.
10.Mei, M., et al., Astragaloside IV attenuates apoptosis of hypertrophic cardiomyocyte through inhibiting oxidative stress and calpain-1 activation. Environ Toxicol Pharmacol, 2015. 40(3): p. 764-73.
11.Zhang, A., et al., Astragaloside IV inhibits progression of lung cancer by mediating immune function of Tregs and CTLs by interfering with IDO. J Cancer Res Clin Oncol, 2014. 140(11): p. 1883-90.
12.Zheng, J., et al., In Vitro Neuroprotection of Rat Hippocampal Neurons by Manninotriose and Astragaloside IV Against Corticosterone-Induced Toxicity, in Molecules. 2018.
13.Wu, Z., Functional symmetry of the primary visual pathway evidenced by steady-state visual evoked potentials. Brain Res Bull, 2017. 128: p. 13-21.
14.Gupta, M.P., et al., Retinal Anatomy and Pathology. Dev Ophthalmol, 2016. 55: p. 7-17.
15.Runkle, E.A. and D.A. Antonetti, The blood-retinal barrier: structure and functional significance. Methods Mol Biol, 2011. 686: p. 133-48.
16.Thoreson, W.B. and D.M. Dacey, Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev, 2019. 99(3): p. 1527-1573.
17.Hoang, Q.V., et al., Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci, 2002. 19(4): p. 395-407.
18.Aizawa, S., et al., Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye, 2008. 23(2): p. 304.
19.Nag, T.C. and S. Wadhwa, Ultrastructure of the human retina in aging and various pathological states. Micron, 2012. 43(7): p. 759-81.
20.Margrain, T.H., et al., Do blue light filters confer protection against age-related macular degeneration? Prog Retin Eye Res, 2004. 23(5): p. 523-31.
21.Grimm, C. and C.E. Reme, Light damage as a model of retinal degeneration. Methods Mol Biol, 2013. 935: p. 87-97.
22.Chang, S.W., et al., Increased Expression of Osteopontin in Retinal Degeneration Induced by Blue Light-Emitting Diode Exposure in Mice. Front Mol Neurosci, 2016. 9: p. 58.
23.Krigel, A., et al., Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. Neuroscience, 2016. 339: p. 296-307.
24.Nakamura, M., et al., The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model. Biol Pharm Bull, 2017. 40(8): p. 1219-1225.
25.Organisciak, D.T. and D.K. Vaughan, Retinal light damage: mechanisms and protection. Prog Retin Eye Res, 2010. 29(2): p. 113-34.
26.Thayaparan, K., M.D. Crossland, and G.S. Rubin, Clinical assessment of two new contrast sensitivity charts. Br J Ophthalmol, 2007. 91(6): p. 749-52.
27.Kretschmer, F., et al., Comparison of optomotor and optokinetic reflexes in mice, in J Neurophysiol. 2017. p. 300-16.
28.Liou, J.-C., et al., Protective effect of crocin against the declining of high spatial frequency-based visual performance in mice. Journal of functional foods, 2018. 49: p. 314-323.
29.Shi, C., et al., Optimization of Optomotor Response-based Visual Function Assessment in Mice. Sci Rep, 2018. 8(1): p. 9708.
30.Cahill, H. and J. Nathans, The Optokinetic Reflex as a Tool for Quantitative Analyses of Nervous System Function in Mice: Application to Genetic and Drug-Induced Variation, in PLoS One. 2008.
31.Umino, Y., et al., The relationship between slow photoresponse recovery rate and temporal resolution of vision. J Neurosci, 2012. 32(41): p. 14364-73.
32.Jiang, X., et al., Effects of treatment with Astragalus Membranaceus on function of rat leydig cells, in BMC Complement Altern Med. 2015.
33.Li, L., et al., Chemical and genetic diversity of Astragalus mongholicus grown in different eco-climatic regions. PLoS One, 2017. 12(9): p. e0184791.
34.Li, X., et al., A Review of Recent Research Progress on the Astragalus Genus, in Molecules. 2014. p. 18850-80.
35.Dong, Z., et al., Astragaloside IV alleviates heart failure via activating PPARalpha to switch glycolysis to fatty acid beta-oxidation. Sci Rep, 2017. 7(1): p. 2691.
36.Han, R., et al., Astragalus polysaccharide ameliorates H2O2-induced human umbilical vein endothelial cell injury. Mol Med Rep, 2017. 15(6): p. 4027-4034.
37.Kim, S., et al., Ameliorating the Effect of Astragaloside IV on Learning and Memory Deficit after Chronic Cerebral Hypoperfusion in Rats, in Molecules. 2015. p. 1904-21.
38.Zhang, Q., et al., Protective effects of astragalus extract against intermittent hypoxia-induced hippocampal neurons impairment in rats. Chin Med J (Engl), 2013. 126(8): p. 1551-4.
39.Song, M.T., et al., Astragaloside IV ameliorates neuroinflammation-induced depressive-like behaviors in mice via the PPARgamma/NF-kappaB/NLRP3 inflammasome axis. Acta Pharmacol Sin, 2018. 39(10): p. 1559-1570.
40.Ding, Y., et al., Protective effects of astragaloside IV on db/db mice with diabetic retinopathy. PLoS One, 2014. 9(11): p. e112207.
41.Bao, H., et al., Astragaloside protects oxygen and glucose deprivation induced injury by regulation of microRNA-21 in retinal ganglion cell line RGC-5. Biomed Pharmacother, 2019. 109: p. 1826-1833.
42.王炳勳, 護眼保健素材開發驗證:以小鼠視網膜光損傷退化模型探討田七皂苷R1於改善視覺功能的作用. 中山醫學大學視光學系碩士班學位論文, 2018: p. 1-78.43.黃韻玶, 護眼保健素材開發驗證:以小鼠視網膜強光損傷退化模型探討丹蔘素鈉於改善視覺功能的作用. 中山醫學大學視光學系碩士班學位論文, 2018: p. 1-79.44.王聖喬, 黃耆苷活性分子於緩解視網膜光損傷模式之濃度依賴特性探討. 科技部大專學生研究計畫, 指導教授:劉智誠, 2018.
45.王聖喬, 研究黃耆苷活性成分在預防視網膜光損傷中的作用. 科技部大專學生研究計畫, 指導教授:劉智誠, 2018.
46.Park, Y.C., et al., Genotoxicity Study of Polysaccharide Fraction from Astragalus membranaceus''s Aerial Parts, in Toxicol Res. 2014. p. 131-8.
47.Sinclair, S., Chinese herbs: a clinical review of Astragalus, Ligusticum, and Schizandrae. Altern Med Rev, 1998. 3(5): p. 338-44.
48.Park, Y.C., et al., A 90 day repeated dose-oral toxicity study of extracts from Astragalus membranaceus-aboveground parts in rats. Korean Journal of Medicinal Crop Science, 2013. 21(6): p. 474-485.
49.衛生福利部中醫司藥, 臺灣中藥典第三版. 2018.
50.Behl, T. and A. Kotwani, Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol, 2017. 69(3): p. 223-235.
51.歐綺家, 緩解視網膜發炎退化之藥效生物篩選: 黃耆活性萃取物用於抑制視網膜微膠細胞活化之作用. 科技部大專學生研究計畫, 指導教授:陳伯易, 2018.
52.Gupta, V., et al., BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta, 2014. 1842(9): p. 1567-78.
53.Iuvone, P.M., et al., N-acetylserotonin: circadian activation of the BDNF receptor and neuroprotection in the retina and brain. Adv Exp Med Biol, 2014. 801: p. 765-71.
54.Ola, M.S., et al., Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats. Cell Mol Neurobiol, 2013. 33(3): p. 359-67.
55.Pinzon‐Duarte, G., et al., Effects of brain‐derived neurotrophic factor on cell survival, differentiation and patterning of neuronal connections and Muller glia cells in the developing retina. European Journal of Neuroscience, 2004. 19(6): p. 1475-1484.
56.Lawson, E.C., et al., Aerobic exercise protects retinal function and structure from light-induced retinal degeneration. J Neurosci, 2014. 34(7): p. 2406-12.
57.Sun, L., Y. Liu, and L. Wang, Effect of Astragalus Injection on expression of BDNF in cerebral ischemia reperfusion injury in rats. World Chinese Medicine, 2016. 11(4): p. 686-689.