|
Al-Juhaimi, F.Y., 2014. Citrus fruits by-products as sources of bioactive compounds with antioxidant potential. Pak. J. Bot 46, 1459-1462. 2.Asikin, Y., Taira, I., Inafuku-Teramoto, S., Sumi, H., Ohta, H., Takara, K., Wada, K., 2012a. The composition of volatile aroma components, flavanones, and polymethoxylated flavones in Shiikuwasha (Citrus depressa Hayata) peels of different cultivation lines. J. Agric. Food Chem 60, 7973−7980. 3.Asikin, Y., Taira, I., Inafuku, S., Sumi, H., Sawamura, M., Takara, K., Wada, K., 2012b. Volatile aroma components and antioxidant activities of the flavedo peel extract of unripe Shiikuwasha (Citrus depressa Hayata). Journal of Food Science 77, C469-C475. 4.Asikin, Y., Yamano, Y., Takara, K., Wada, K., 2013. Effect of cultivation line and peeling process on chemical composition, taste characteristic, volatile aroma components, and antioxidant activity in Shiikuwasha (Citrus depressa Hayata) juice. Meeting Future Food Demands: Security & Sustainability. 5.Bai, F.W., Anderson, W.A., Moo-Young, M., 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances 26, 89–105. 6.Bora, H., Kamle, M., Mahato, D.K., Tiwari, P., Kumar, P., 2020. Citrus essential oils (CEOs) and their applications in food: an overview. Plants 9, 357. 7.Četojević-Simin, D.D., Cvetković, A.S.V.D.D., Markov, S.L., Mrđanović, J.Ž., Bogdanović, V.V., Šolajić, S.V., 2012. Bioactivity of lemon balm kombucha. Food Bioprocess Technol 5, 1756–1765. 8.Coelho, R.M.D., Almeida, A.L.d., Amaral, R.Q.G.d., Mota, R.N.d., Sousa, P.H.M.d., 2020. Kombucha: review. International Journal of Gastronomy and Food Science 22, 100272. 9.Chauhan, S., Nisha, Azmi, W., 2013. Oxygen transfer rate modulates the dextransucrase production by Acetobacter tropicalis. J Biochem Microb Technol 1, 1-7. 10.Chawla, P.R., Bajaj, I.B., Survase, S.A., Singhal, R.S., 2009. Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol 47, 107-124. 11.Chen, C., Liu, B.Y., 2000. Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology 89, 834-839. 12.Dontha, S., 2016. A review on antioxidant methods. Asian J Pharm Clin Res 9, 14-32. 13.Emiljanowicz, K.E., Malinowska-Pańczyk, E., 2019. Kombucha from alternative raw materials – The review. Food Science and Nutrition 60, 3186-3194. 14.Esa, F., Tasirin, S.M., Rahman, N.A., 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia 2, 113-119. 15.Feng, X., Ullah, Wang, X., Sun, X., Li, C., Bai, Y., Chen, L., Li, Z., 2015. Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. Journal of Food Science 80, E2217 - E2227. 16.Gomes, R.J., Borges, M.d.F., Rosa, M.d.F., Castro-Gómez, R.J.H., Spinosa, W.A., 2018. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technology and Biotechnology 56, 139-151. 17.Güzel, M., Akpınar, Ö., 2020. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016. International Journal of Biological Macromolecules 162, 1597–1604. 18.Hashemi, S.M.B., Khaneghah, A.M., Barba, F.J., Nemati, Z., Shokofti, S.S., Alizadeh, F., 2017. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: chemical composition, antioxidant and antibacterial activities. Journal of Functional Foods 38, 409 - 414. 19.Hiromi, K.-N., Naoko, M., Yoichi, N., Yasuyo, S., Yutaka, T., 2018. Fermentation of Shiikuwasha (Citrus depressa Hayata) pomace by lactic acid bacteria to generate new functional materials. International Journal of Food Science and Technology 20.Ivanišová, E., Meňhartová, K., Terentjeva, M., Harangozo, Ľ., Kántor, A., Kačániová, M., 2019. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. J Food Sci Technol. 21.Jayabalan, R., Malbaˇsa, R.V., Lonˇcar, E.S., Vitas, J.S., Sathishkumar, M., 2014. A review on kombucha tea—Microbiology,composition, fermentation, beneficial effects,toxicity, and tea fungus. Comprehensive Reviews inFood Science and Food Safety 13, 538-550. 22.Jayabalan, R., Marimuthu, S., Swaminathan, K., 2007. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry 102, 392-398. 23.Jayanthi, P., Lalitha, P., 2011. Reducing power of the solvent extracts of Eichhornia Crassipes (Mart.) Solms International Journal of Pharmacy and Pharmaceutical Sciences 3, 126 - 128. 24.Ji, K., Wang, W., Zeng, B., Chen, S., Zhao, Q., Chen, Y., Li, G., Ma, T., 2016. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Scientific Reports 6, 21863. 25.Jonas, R., Farah, L.F., 1998. Production and application of microbial cellulose. Polymer degradation and Srabiliry 59l, 101-106. 26.Jozala, A.F., Pértile, R.A.N., Santos, C.A.d., Santos-Ebinuma, V.d.C., Seckler, M.M., Gama, F.M., Jr., A.P., 2014. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology 99, 1181–1190. 27.Kapp, J.M., Sumner, W., 2019. Kombucha: a systematic review of the empirical evidence of human health benefit. Annals of Epidemiology 30, 66-70. 28.Kaur, P., Ghoshal, G., Banerjee, U.C., 2019. Traditional bio-preservation in beverages: fermented beverages in: Grumezescu, A., Holban, A.M. (Eds.), Preservatives and preservation approaches in beverages, vol. 15, pp. 69-113. 29.Ke, Z., Yupan, Xu, X., Nie, C., Zhou, Z., 2015. Citrus flavonoids and human cancers. Food and Nutrition Research 3, 341-351. 30.Kumar, S., Sharma, S., Kansal, S.K., Elumalai, S., 2020. Efficient conversion of glucose into fructose via extraction-assisted isomerization catalyzed by endogenous polyamine spermine in the aqueous Phase. ACS Omega 5, 2406−2418. 31.Leal, J.M., Suárez, L.V., Jayabalan, R., Oros, J.H., Escalante-Aburto, A., 2018. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA - Journal of Food 16, 390–399. 32.Lima, H.L.S., Nascimento, E.S., Andrade, F.K., Brígida, A.I.S., Borges, M.F., Cassales, A.R., Muniz, C.R., M. de S. M. Souza Filho, Morais, J.P.S., Rosa, M.d.F., 2017. Bacterial cellulose production by Komagataeibacter hansenii ATCC 23769 using sisal juice - an agroindustry waste Brazilian Journal of Chemical Engineering 34, 671 – 680. 33.Liu, L.-x., Liu, S.-x., Wang, Y.-m., Bi, J.-c., Chen, H.-m., Deng, J., Zhang, C., Hu, Q.-s., Li, C.-f., 2018. Komagataeibacter cocois sp. nov., a novel cellulose-producing strain isolated from coconut milk. Int J Syst Evol Microbiol 68, 3125–3131. 34.Lobo, R.O., Diass, F.O., Shenoy, C.K., 2017. Kombucha for healthy living: evaluation of antioxidant potential and bioactive compounds. International Food Research Journal 24, 541-546. 35.Lončar, E., Djurić, M., Malbaša, R., Kolarov, L., Klašnja, M., 2006. Influence of working conditions upon kombucha conducted fermentation of black tea. Food and Bioproducts Processing 84, 186–192. 36.Lustri, W.R., Barud, H.G.d.O., Barud, H.d.S., Peres, M.F.S., Gutierrez, J., Tercjak, A., Junior, O.B.d.O., Ribeiro, S.J.L., 2015. Chapter 6. Microbial cellulose — Biosynthesis mechanisms and medical applications, Cellulose - Fundamental aspects and current trends. InTech. 37.Majidi, M.I.H.A., Y-ALQubury, H., 2016. Determination of vitamin C (ascorbic acid) contents in various fruit and vegetable by UV-spectrophotometry and titration methods. Journal of Chemical and Pharmaceutical Sciences 9, 2972 - 2974. 38.Marsh, A.J., Hill, C., Ross, R.P., Cotter, P.D., 2014. Fermented beverages with health-promoting potential: past and future perspectives. Food Science & Technology 38, 113-124. 39.Marshall, E., Mejia, D., 2011. Traditional fermented food and beverage for improve livelihoods. Food and agriculture organization of the United Nations (FAO), Italy. 40.Marta, K.S., Agnieszka, S., E.Halina, 2020. Citrus limon (Lemon) Phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 9, 119. 41.Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A., 2016. Acetic acid bacteria: ecology and physiology. Springer Nature, Japan. 42.Mikkelsen, D., Flanagan, B.M., Dykes, G.A., Gidley, M.J., 2009. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Applied Microbiology 107, 576-583. 43.Miyake, Y., Yamamoto, K., Morimitsu, Y., Osawa, T., 1997. Isolation of C-glucosylflavone from lemon peel and antioxidative activity of flavonoid compounds in lemon fruit. J. Agric. Food Chem 45, 4619-4623. 44.Mohammadkazemi, F., Azin, M., Ashori, A., 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers 117, 518-523. 45.Najwa, R.F., Azrina, A., 2017. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. International Food Research Journal 24, 726-733s. 46.Nateghpour, B., Kavoosi, G., Mirakhorli, N., 2021. Amino acid profile of the peel of three citrus species and its effect on the combination of amino acids and fatty acids Chlorella vulgaris. Journal of Food Composition and Analysis 98, 103808. 47.Nguyen, V.T., Flanagan, B., Gidley, M.J., Dykes, G.A., 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr Microbiol 57, 449–453. 48.Raghavendran, V., Asare, E., Roy, I., 2020. Bacterial cellulose: biosynthesis, production, and applications. Advances in Microbial Physiology 77, ISSN 0065-2911. 49.Rainbow, C., Mitson, G.W., 1953. Nutritional requirements of acetic acid bacteria. J. gen. Microbiol 9, 371-375. 50.Raiszadeh-Jahromi, Y., Rezazadeh-Bari, M., Almasi, H., Amiri, S., 2020. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J Food Sci Technol. 51.Ramful, D., Tarnus, E., Aruoma, O.I., Bourdon, E., Bahorun, T., 2011. Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International 44, 2088–2099. 52.Ranganna, S., Ramana, K.V.R., (retired), V.S.G., Kefford, J.F., 2013. Citrus fruits - varieties, chemistry, technology, and quality evaluation. Part II. Chemistry, technology, and quality evaluation.A. Chemistry C R C Critical Reviews in Food Science and Nutrition 18, 313-386. 53.Rapisarda, P., Bianco, M.L., Pannuzzo, P., Timpanaro, N., 2008. Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biology and Technology 49, 348–354. 54.Romling, U., Galperin, M.Y., 2015. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends in Microbiology, 1-13. 55.Sadka, A., Shlizerman, L., Kamara, I., Blumwald, E., 2019. Primary metabolism in citrus fruit as affected by its unique structure. Frontiers in Plant Science 10, 1167. 56.Sainz, F., Mas, A., Torija, M.J., 2017. Effect of ammonium and amino acids on the growth of selected strains of Gluconobacter and Acetobacter. International Journal of Food Microbiology 242, 45-52. 57.Sayd, A.A.K.b., 2014. Amino acids changes during citrus storage. Food Science and Quality Management 24, 2224-6088. 58.Shah, N., Ul-Islam, M., Khattak, W.A., Park, J.K., 2013. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydrate Polymers 98, 1585–1598. 59.Sharaa, I.E., Mussa, S.B., 2019. Determination of vitamin C (ascorbic acid) contents in vegetable samples by UV-spectrophotometry and redox titration methods and estimation the effect of time, cooking and frozen on ascorbic acid contents. International Journal of Progressive Sciences and Technologies 15, 281-293. 60.Shiu, Y.-L., Lin, H.-L., Chi, C.-C., Yeh, S.-P., Liu, C.-H., 2016. Effects of hirami lemon, Citrus depressa Hayata, leaf meal in diets on the immune response and disease resistance of juvenile barramundi, Lates calcarifer (bloch), against Aeromonas hydrophila. Fish & Shellfish Immunology 55, 332e338. 61.Srihari, T., Satyanarayana, U., 2012. Changes in Free Radical Scavenging Activity of Kombucha during Fermentation. J. Pharm. Sci. & Res. 11, 1978 - 1981. 62.Toledo, L.E.T., García, D.M., Cruz, E.P., Intriago, L.M.R., Pérez, J.N., Chanfrau, J.M.P., 2019. Fructosyltransferases and invertases: useful enzymes in the food and feed industries, in: Kuddus, M. (Ed.), Enzymes in food biotechnology Andre Gerhard Wolff, India, pp. 451-469. 63.Thoratab, M.N., Dastager, S.G., 2018. High yield production of cellulose by a Komagataeibacter rhaeticus PG2 strain isolated from pomegranate as a new host†. The Royal Society of Chemistry 8, 29797–29805. 64.Tran, T., Grandvalet, C., Verdier, F., Martin, A., Alexandre, H., Tourdot-Maréchal, R., 2020. Microbiological and technological parameters impacting the chemical composition and sensory quality of kombucha. Compr Rev Food Sci Food Saf 19, 2050–2070. 65.Tripoli, E., Guardia, M.L., Giammanco, S., Majo, D.D., Giammanco, M., 2007. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chemistry 104, 466-479. 66.Uzyol, H.K., Saçan, M.T., 2017. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environ Sci Pollut Res 24, 11154–11162. 67.Velićanski, A.S., Cvetković, D.D., Markov, S.L., Šaponjac, V.T.T., Vulić, J.J., 2014. Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technol. Biotechnol 52, 420–429.
|