|
1.晟鈦股份有限公司, PCB知識. 2.過玉清, PCB的數控鑽銑雕刻機制版. 管理與財富, 2009.6: p. 125. 3.肖波濤, 銑板毛刺的產生原因及對策. 印刷電路信息, 2006.12. 4.Rahman, M., A. Senthil Kumar, and J.R.S. Prakash, Micro milling of pure copper. Journal of Materials Processing Technology, 2001. 116(1): p. 39-43. 5.Sorgato, M., R. Bertolini, and S. Bruschi, On the correlation between surface quality and tool wear in micro–milling of pure copper. Journal of Manufacturing Processes, 2020. 50: p. 547-560. 6.陳其勝, 多元氮化鋁鈦鋯與氮化鋁鈦鉻鋯之機械性質與切削性能研究. 國立虎尾科技大學, 2021. 7.Callister, W.D.a.D.G.R., Materials Science and Engineering: An Introduction, 8th Edition. 2009. 8.Musil, J., Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012. 207: p. 50-65. 9.Huang, S.-H., et al., Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings. Surface and Coatings Technology, 2011. 206(7): p. 1744-1752. 10.Pogrebnjak, A., et al., Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations. Materials Characterization, 2017. 134: p. 55-63. 11.Diserens, M., J. Patscheider, and F. Lévy, Improving the properties of titanium nitride by incorporation of silicon. Surface and Coatings Technology, 1998. 108-109: p. 241-246. 12.Wu, F.-B., S.-K. Tien, and J.-G. Duh, Manufacture, microstructure and mechanical properties of CrWN and CrN/WN nanolayered coatings. Surface and Coatings Technology, 2005. 200(5): p. 1514-1518. 13.Veprek, S., et al., Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surface and Coatings Technology, 2000. 133-134: p. 152-159. 14.Stueber, M., et al., Concepts for the design of advanced nanoscale PVD multilayer protective thin films. Journal of Alloys and Compounds, 2009. 483(1): p. 321-333. 15.Chim, Y.C., et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849. 16.Knutsson, A., et al., Thermally enhanced mechanical properties of arc evaporated Ti0.34Al0.66N/TiN multilayer coatings. Journal of Applied Physics, 2010. 108(4): p. 044312. 17.Yang, B., et al., Thermal and thermo-mechanical properties of Ti–Al–N and Cr–Al–N coatings. International Journal of Refractory Metals and Hard Materials, 2012. 35: p. 235-240. 18.Chen, Y.H., et al., Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying. Surface and Coatings Technology, 2018. 342: p. 85-93. 19.Veprek, S. and M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008. 202(21): p. 5063-5073. 20.Pfeiler, M., et al., Improved oxidation resistance of TiAlN coatings by doping with Si or B. Surface and Coatings Technology, 2009. 203(20): p. 3104-3110. 21.Kuo, Y.-C., C.-J. Wang, and J.-W. Lee, The microstructure and mechanical properties evaluation of CrTiAlSiN coatings: Effects of silicon content. Thin Solid Films, 2017. 638: p. 220-229. 22.Chang, Y.-Y. and M.-C. Cai, Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surface and Coatings Technology, 2019. 374: p. 1120-1127. 23.Park, I.-W., et al., Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system. Thin Solid Films, 2004. 447-448: p. 443-448. 24.Martin, P.J., et al., Nanocomposite Ti–Si–N, Zr–Si–N, Ti–Al–Si–N, Ti–Al–V–Si–N thin film coatings deposited by vacuum arc deposition. Surface and Coatings Technology, 2005. 200(7): p. 2228-2235. 25.Tillmann, W. and M. Dildrop, Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures. Surface and Coatings Technology, 2017. 321: p. 448-454. 26.Liu, Z.R., et al., Effect of Si-addition on structure and thermal stability of Ti-Al-N coatings. Journal of Alloys and Compounds, 2022. 917: p. 165483. 27.Kretschmer, A., et al., Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying. Surface and Coatings Technology, 2021. 416: p. 127162. 28.Wu, L., et al., Thermal stability and oxidation resistance of Ti0.22Al0.74Si0.04N coating synthesized by chemical vapor deposition. Journal of Alloys and Compounds, 2024. 986: p. 174107. 29.Yan, C., et al., A Si-Nb co-alloyed AlCrN coating with good mechanical properties, excellent thermal stability and resistance to high temperature oxidation. Surface and Coatings Technology, 2024. 484: p. 130825. 30.黃凱群, 陰極電弧蒸鍍鋁鈦鉻鈮矽硼多元合金氮化物薄膜之高溫性質與不銹鋼切削分析. 國立虎尾科技大學, 2022: p. 101. 31.Chang, Y.-Y. and C.-Y. Hsiao, High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surface and Coatings Technology, 2009. 204(6): p. 992-996. 32.蔡宗宏, 陰極電弧蒸鍍多層氮化鋁鉻硼與氮化鋁鈦矽薄膜之熱穩定與抗氧化能力研究. 國立虎尾科技大學, 2023. 33.Chen, L., et al., Thermal stability and oxidation resistance of Ti–Al–N coatings. Surface and Coatings Technology, 2012. 206(11): p. 2954-2960. 34.Al-Rjoub, A., et al., The influence of V addition on the structure, mechanical properties, and oxidation behaviour of TiAlSiN coatings deposited by DC magnetron sputtering. Journal of Materials Research and Technology, 2022. 20: p. 2444-2453. 35.Zhang, H., et al., Temperature-dependent oxidation behavior of arc evaporated Al–Ti–B–N coatings. Corrosion Science, 2022. 203: p. 110347. 36.Xiao, B., et al., Mechanical, oxidation, and cutting properties of AlCrN/AlTiSiN nano-multilayer coatings. Surface and Coatings Technology, 2022. 433: p. 128094. 37.Seidl, W.M., et al., Mechanical properties and oxidation resistance of Al-Cr-N/Ti-Al-Ta-N multilayer coatings. Surface and Coatings Technology, 2018. 347: p. 427-433. 38.Asanuma, H., et al., Cerium doping of Ti-Al-N coatings for excellent thermal stability and oxidation resistance. Surface and Coatings Technology, 2017. 326: p. 165-172. 39.Hsieh, M.-H., et al., Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology, 2013. 221: p. 118-123. 40.Tsai, D.-C., et al., Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering. Journal of Alloys and Compounds, 2015. 647: p. 179-188. 41.Wang, J.-J. and F.-Y. Ouyang, Oxidation behavior of Al-Cr-Nb-Si-Zr high entropy nitride thin films at 850 °C. Corrosion Science, 2021. 187: p. 109467. 42.Wu, Z.T., et al., Influence of niobium addition on microstructure, mechanical properties and oxidation resistance of ZrN coatings. Thin Solid Films, 2014. 570: p. 256-261. 43.Wu, Z.T., et al., Evaluating the influence of adding Nb on microstructure, hardness and oxidation resistance of CrN coating. Surface and Coatings Technology, 2016. 289: p. 45-51. 44.Mikula, M., et al., Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings. Acta Materialia, 2016. 121: p. 59-67. 45.Zhang, H., et al., Positive modification on the mechanical, tribological and oxidation properties of AlCrNbSiN coatings by regulating the Nb/Si-doping ratio. Ceramics International, 2021. 47(22): p. 31603-31616. 46.Zhou, J., et al., Effect of B-doping on the mechanical properties, thermal stability and oxidation resistance of TiAlN coatings. International Journal of Refractory Metals and Hard Materials, 2021. 98: p. 105531. 47.Chang, Y.-Y., et al., Tribological and mechanical properties of AlCrBN hard coating deposited using cathodic arc evaporation. Surface and Coatings Technology, 2022. 432: p. 128097. 48.Bartosik, M., et al., Thermally-induced formation of hexagonal AlN in AlCrN hard coatings on sapphire: Orientation relationships and residual stresses. Surface and Coatings Technology, 2010. 205(5): p. 1320-1323. 49.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167. 50.Bruslind, L., General microbiology. 51.Neumeier, J., Photophysics of Graphene Quantum Dots. 2015. 52.Wang, Y., et al., Real-time synchrotron x-ray studies of low- and high-temperature nitridation of $c$-plane sapphire. Physical Review B, 2006. 74(23): p. 235304. 53.程陽有限公司, FR4玻璃纖維板-特性表. 54.Ferreira, R., et al., Influence of morphology and microstructure on the tribological behavior of arc deposited CrN coatings for the automotive industry. Surface & coatings technology, 2020. 397: p. 126047. 55.Rother, B. and H. Kappl, Effects of low boron concentrations on the thermal stability of hard coatings. Surface and Coatings Technology, 1997. 96(2): p. 163-168. 56.Mendez, A., et al., Effect of Al content on the hardness and thermal stability study of AlTiN and AlTiBN coatings deposited by HiPIMS. Surface and Coatings Technology, 2021. 422: p. 127513. 57.Hu, C., L. Chen, and V. Moraes, Structure, mechanical properties, thermal stability and oxidation resistance of arc evaporated CrAlBN coatings. Surface and Coatings Technology, 2021. 417: p. 127191. 58.Liu, S., et al., Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Materialia, 2019. 165: p. 615-625. 59.Zhu, L., et al., High temperature oxidation behavior of Ti0.5Al0.5N coating and Ti0.5Al0.4Si0.1N coating. Vacuum, 2012. 86(12): p. 1795-1799. 60.Chang, Y.-Y., H.-Q. Feng, and C.-C. Chen, Effect of CrMoN addition on the thermal stability and cyclic impact resistance of TiVN coatings. Surface and Coatings Technology, 2023. 473: p. 129963. 61.Pan, Y., et al., Investigating the influence of epitaxial modulation on the evolution of superhardness of the VN/TiB2 multilayers. Applied Surface Science, 2016. 390: p. 406-411. 62.Du, J.W., et al., Mechanical properties, thermal stability and oxidation resistance of TiN/CrN multilayer coatings. Vacuum, 2020. 179: p. 109468. 63.Hultman, L., et al., Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations. Physical Review B, 2007. 75(15): p. 155437. 64.Holleck, H. and V. Schier, Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995. 76-77: p. 328-336. 65.Zhang, Q., et al., Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating. Surface and Coatings Technology, 2018. 356: p. 1-10. 66.Hahn, R., et al., Superlattice effect for enhanced fracture toughness of hard coatings. Scripta Materialia, 2016. 124: p. 67-70. 67.Fang, W., et al., Reduced crater wear and improved high-speed dry cutting performance of B-containing AlTiBN coatings against Ti-6Al-4 V alloy. Tribology International, 2023. 187: p. 108730. 68.Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1): p. 1-11. 69.Vepřek, S. and S. Reiprich, A concept for the design of novel superhard coatings. Thin Solid Films, 1995. 268(1): p. 64-71. 70.Mayrhofer, P., et al., Thermally induced self-hardening of nanocrystalline Ti-B-N thin films. Journal of Applied Physics, 2006. 100. 71.Chang, S.-Y., et al., Improved Diffusion-Resistant Ability of Multicomponent Nitrides: From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)N. JOM, 2013. 65(12): p. 1790-1796. 72.Pei, F., et al., Improved properties of TiAlN coating by combined Si-addition and multilayer architecture. Journal of Alloys and Compounds, 2019. 790: p. 909-916. 73.Zhou, J., et al., Phase equilibria, thermodynamics and microstructure simulation of metastable spinodal decomposition in c–Ti1−xAlxN coatings. Calphad, 2017. 56: p. 92-101. 74.Endrino, J.L., et al., Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing. Acta Materialia, 2011. 59(16): p. 6287-6296. 75.Mayrhofer, P.H., et al., Energetic balance and kinetics for the decomposition of supersaturated Ti1−xAlxN. Acta Materialia, 2007. 55(4): p. 1441-1446. 76.Moser, M., et al., Influence of Yttrium on the Thermal Stability of Ti-Al-N Thin Films. 2010. 3(3): p. 1573-1592. 77.Mayrhofer, P.H., D. Music, and J.M. Schneider, Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1−xAlxN. Journal of Applied Physics, 2006. 100(9). 78.Xu, Y.X., et al., Improving thermal stability of TiSiN nanocomposite coatings by multilayered epitaxial growth. Surface and Coatings Technology, 2017. 321: p. 180-185. 79.Chen, W., et al., Comparison of microstructures, mechanical and tribological properties of arc-deposited AlCrN, AlCrBN and CrBN coatings on Ti-6Al-4V alloy. Surface and Coatings Technology, 2020. 404: p. 126429. 80.Olefjord, I., H.J. Mathieu, and P. Marcus, Intercomparison of surface analysis of thin aluminium oxide films. Surface and Interface Analysis, 1990. 15(11): p. 681-692. 81.Scientific, T.F., Thermo Scientific Avantage Data System for XPS-Aluminum • Other Metal. 82.Youngman, R.A. and J.H. Harris, Luminescence Studies of Oxygen-Related Defects In Aluminum Nitride. Journal of the American Ceramic Society, 1990. 73(11): p. 3238-3246. 83.Noda H., O.K., Ogata T., Matsuki K., Kamada H., Nippon Kagaku Kaishi 8, 1084, 1986. 84.Gonbeau, D., et al., XPS study of thin films of titanium oxysulfides. Surface Science, 1991. 254(1): p. 81-89. 85.Scientific, T.F., Thermo Scientific Avantage Data System for XPS-Titanium • Transition Metal. 86.Chourasia, A.R. and D.R. Chopra, X-ray Photoelectron Study of TiN. Surface Science Spectra, 1992. 1(2): p. 233-237. 87.Xu, Y.X., et al., Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios. Surface and Coatings Technology, 2016. 304: p. 512-518. 88.Danek, M., et al., Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films. Surface and Coatings Technology, 2017. 313: p. 158-167. 89.Vaz, F., et al., Thermal oxidation of Ti1 − xAlxN coatings in air. Journal of the European Ceramic Society, 1997. 17(15): p. 1971-1977. 90.Hollerweger, R., et al., Guidelines for increasing the oxidation resistance of Ti-Al-N based coatings. Thin Solid Films, 2019. 688: p. 137290. 91.Xu, Y.X., et al., Thermal stability and oxidation resistance of V-alloyed TiAlN coatings. Ceramics International, 2018. 44(2): p. 1705-1710. 92.Badrinarayanan, S. and S. Sinha, X‐ray photoelectron spectroscopy studies of the reaction of N+2 ‐ion beams with niobium and tantalum metals. Journal of Applied Physics, 1991. 69(3): p. 1141-1146. 93.Chen, Y.-I., et al., Mechanical properties, bonding characteristics, and oxidation behaviors of Nb–Si–N coatings. Surface and Coatings Technology, 2018. 350: p. 831-840. 94.Bell, F.G. and L. Ley, Photoemission study of ${\mathrm{SiO}}_{\mathrm{x}}$ (0\ensuremath{\le}x\ensuremath{\le}2) alloys. Physical Review B, 1988. 37(14): p. 8383-8393. 95.Yu, G.E., et al., Synthesis of silicon oxynitride from a polymeric precursor. Journal of Materials Science, 1995. 30(21): p. 5371-5380. 96.Bahl, M.K., ESCA studies of some niobium compounds. Journal of Physics and Chemistry of Solids, 1975. 36(6): p. 485-491. 97.Prieto, P., L. Galán, and J.M. Sanz, An XPS study of NbNx prepared by ion implantation and the near-surface effects induced by Ar+ bombardment. Surface Science, 1991. 251-252: p. 701-705. 98.Jouve, G., C. Séverac, and S. Cantacuzène, XPS study of NbN and (NbTi)N superconducting coatings. Thin Solid Films, 1996. 287(1): p. 146-153. 99.Havey, K.S., J.S. Zabinski, and S.D. Walck, The chemistry, structure, and resulting wear properties of magnetron-sputtered NbN thin films. Thin Solid Films, 1997. 303(1): p. 238-245. 100.Vepřek, S., New development in superhard coatings: the superhard nanocrystalline-amorphous composites. Thin Solid Films, 1998. 317(1): p. 449-454. 101.Davim, J.P. and J.P. Davim, Modern machining technology: a practical guide. 2011: Elsevier.
|