1.黃兆龍,2006,混凝土性質與行為,詹氏書局。
2.陳昱文,2020,爐石粉與不銹鋼還原碴取代水泥製成水泥(砂)漿工程性質之研究,國立高雄科技大學土木工程科技研究所,碩士論文。3.Ibrahim, S., & Meawad, A. (2022). Towards green concrete: Study the role of waste glass powder on cement/superplasticizer compatibility. Journal of Building Engineering, 47, 103751.
4.Breilly, D., Fadlallah, S., Froidevaux, V., Colas, A., & Allais, F. (2021). Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Construction and Building Materials, 301, 124065.
5.羅心妤,2003,強塑劑質與量對混凝土性質之影響,國立台灣科技大學營建工程系,碩士論文。6.陳昱仁,2017,常溫合成緩釋保坍型聚羧酸強塑劑特性探討,國立高雄第一科技大學營建研究所,碩士論文。7.黃彥傑,2015,常溫合成泛用型高保塑羧酸強塑劑之開發研究,國立高雄第一科技大學營建研究所,碩士論文。8.鄭任軒,2022,以飛灰取代爐石粉改善超硫酸鹽水泥漿體之可行性,國立高雄科技大學土木工程系,碩士論文。9.周俊佑,2021,含爐石粉之再生瀝青水泥砂漿工程性質研究,國立高雄科技大學土木工程系,碩士論文。10.Macphee, D. E., & Folli, A. (2016). Photocatalytic concretes—The interface between photocatalysis and cement chemistry. Cement and Concrete Research, 85, 48-54.
11.Jiang, Y., Ling, T. C., Shi, C., & Pan, S. Y. (2018). Characteristics of steel slags and their use in cement and concrete—A review. Resources, Conservation and Recycling, 136, 187-197.
12.黃兆龍,2012,新編混凝土材料品質控制試驗,詹氏書局。
13.曾仕文,2012,電弧爐還原硫應用於控制性低強度材料及其安定化成效評估研究,國立中央大學土木工程學系,碩士論文。14.林柏彰,2012,還原爐確取代水泥性質之研究,國立台北科技大學土木與防災研究所,碩士論文。15.吳悅婷,2015,添加不銹鋼還原碴自充填混凝土工程性質預測模式之探討,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文。16.Dang, J., Du, H., & Dai Pang, S. (2020). Hydration, strength and microstructure evaluation of eco-friendly mortar containing waste marine clay. Journal of Cleaner Production, 272, 122784.
17.Mohamed, A. K., Parker, S. C., Bowen, P., & Galmarini, S. (2018). An atomistic building block description of CSH-Towards a realistic CSH model. Cement and Concrete Research, 107, 221-235.
18.Patel, R. A., Perko, J., Jacques, D., De Schutter, G., Ye, G., & Van Bruegel, K. (2018). Effective diffusivity of cement pastes from virtual microstructures: Role of gel porosity and capillary pore percolation. Construction and Building Materials, 165, 833-845.
19.Abid, M., Hou, X., Zheng, W., & Hussain, R. R. (2017). High temperature and residual properties of reactive powder concrete–A review. Construction and Building Materials, 147, 339-351.
20.Zhang, Y., Chang, J., & Ji, J. (2018). AH3 phase in the hydration product system of AFt-AFm-AH3 in calcium sulfoaluminate cements: A microstructural study. Construction and Building Materials, 167, 587-596.
21.Durgun, M. Y., & Sevinc, A. H. (2019). High temperature resistance of concretes with GGBFS, waste glass powder, and colemanite ore wastes after different cooling conditions. Construction and Building Materials, 196, 66-81.
22.Whittaker, M., Zajac, M., Haha, M. B., Bullerjahn, F., & Black, L. (2014). The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cement and Concrete Research, 66, 91-101.
23.留銘駿,2012,石材貼覆混凝土試體火害承載行為研究,逢甲大學土木工程所,碩士論文。24.Zhang, Q., Ye, G., & Koenders, E. (2013). Investigation of the structure of heated Portland cement paste by using various techniques. Construction and Building Materials, 38, 1040-1050.
25.Yamini, G., Shakeri, A., Zohuriaan-Mehr, M. J., & Kabiri, K. (2018). Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: from natural waste to value-added bio-additive. Journal of CO2 Utilization, 24, 50-58.
26.Yu, G., Li, B., Wang, H., Liu, C., & Mu, X. (2013). Preparation of concrete superplasticizer by oxidation-sulfomethylation of sodium lignosulfonate. BioResources, 8(1), 1055-1063.
27.黃兆龍,2001,強塑劑的質與量對混凝土性質的影響,強塑劑於混凝土應用,PP129-154,台灣營建研究院。
28.賴瑞星,2020,高性能混凝土,詹氏書局。
29.Ghosal, M., & Chakraborty, A. K. (2022). Superplasticizer compatibility with cement properties–A study. Materials Today: Proceedings, 56, 568-573.
30.Zhang, J., Ma, Y., Wang, J., Gao, N., Hu, Z., Liu, J., & Wang, K. (2022). A novel shrinkage-reducing polycarboxylate superplasticizer for cement-based materials: Synthesis, performance and mechanisms. Construction and Building Materials, 321, 126342.
31.Altun, M. G., Özen, S., & Mardani-Aghabaglou, A. (2020). Effect of side chain length change of polycarboxylate-ether based high range water reducing admixture on properties of self-compacting concrete. Construction and Building Materials, 246, 118427.
32.Liu, J., Yu, C., Shu, X., Ran, Q., & Yang, Y. (2019). Recent advance of chemical admixtures in concrete. Cement and Concrete Research, 124, 105834.
33.Wang, C., Kong, F., & Pan, L. (2021). Effects of polycarboxylate superplasticizers with different side-chain lengths on the resistance of concrete to chloride penetration and sulfate attack. Journal of Building Engineering, 43, 102817.
34.Alaka, H. A., & Oyedele, L. O. (2016). High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer. Journal of Building Engineering, 8, 81-90.
35.Yaphary, Y. L., Lam, R. H., & Lau, D. (2020). Reduction in cement content of normal strength concrete with used engine oil (UEO) as chemical admixture. Construction and Building Materials, 261, 119967.
36.Benaicha, M., Alaoui, A. H., Jalbaud, O., & Burtschell, Y. (2019). Dosage effect of superplasticizer on self-compacting concrete: correlation between rheology and strength. Journal of Materials Research and Technology, 8(2), 2063-2069.
37.Talukdar, S., & Heere, R. (2019). The effects of pumping on the air content and void structure of air-entrained, wet mix fibre reinforced shotcrete. Case Studies in Construction Materials, 11, e00288.
38.Zhang, X., Akber, M. Z., & Zheng, W. (2022). Predicting the slump of industrially produced concrete using machine learning: A multiclass classification approach. Journal of Building Engineering, 58, 104997.
39.Lei, L., Hirata, T., & Plank, J. (2022). 40 years of PCE superplasticizers-History, current state-of-the-art and an outlook. Cement and Concrete Research, 157, 106826.
40.江奇成、蔡明達、顏翻竫、黃兆龍,2014,高強度高性能混凝土工作性與水化熱之研究,第十六屆全國技術及職業教育研討會,p41~50,工業類,土木建築組論文集。
41.Łaźniewska-Piekarczyk, B. (2014). The methodology for assessing the impact of new generation superplasticizers on air content in self-compacting concrete. Construction and Building Materials, 53, 488-502.
42.Nowak-Michta, A. (2019). Impact analysis of air-entraining and superplasticizing admixtures on concrete compressive strength. Procedia Structural Integrity, 23, 77-82