|
[1]Soroush, M., Baldea, M., & Edgar, T. F. (Eds.). (2020). Smart manufacturing: concepts and methods. Elsevier. [2]Moore, M. R., & Buckner, M. A. (2012). Learning-from-signals on edge devices. IEEE Instrumentation & Measurement Magazine, 15(2), 40-44. [3]蔡.,Pei-Ching.(2023).具即時聽覺辨識之機械手臂應用於螺栓鬆脫檢測之研究. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=111322032111322032 [4]El Naqa, I., & Murphy, M. J. (2015). What is machine learning? (pp. 3-11). Springer International Publishing. [5]Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009a). Overview of supervised learning. The elements of statistical learning: Data mining, inference, and prediction, 9-41. [6]Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009b). Unsupervised learning. The elements of statistical learning: Data mining, inference, and prediction, 485-585. [7]Zhu, X. J. (2005). Semi-supervised learning literature survey. [8]Aueawatthanaphisut, A. (2024, May 18). Introduction to Generative AI. Medium. https://medium.com/@aueawatth.aue/introduction-to-generative-ai-b089832f5069 [9]AIF 技術發展中心. (2023, March 6). SVM的利器:基於三角函數的新核函數. 知勢. https://edge.aif.tw/express-svm/ [10]Jaber, S. (2023). 2023 Edge AI Technology Report. Chapter V: TinyML. Wevolver. https://www.wevolver.com/article/2023-edge-ai-technology-report-chapter-v-tinyml [11]Eshratifar, A. E., Abrishami, M. S., & Pedram, M. (2019). JointDNN: An efficient training and inference engine for intelligent mobile cloud computing services. IEEE Transactions on Mobile Computing, 20(2), 565-576. [12]Allen-Zhu, Z., Li, Y., & Song, Z. (2019, May). A convergence theory for deep learning via over-parameterization. In International conference on machine learning (pp. 242-252). PMLR. [13]Chen, L., Lin, S., Lu, X., Cao, D., Wu, H., Guo, C., ... & Wang, F. Y. (2021). Deep neural network based vehicle and pedestrian detection for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3234-3246. [14]Lu, X., Kang, X., Nishide, S., & Ren, F. (2019, December). Object detection based on SSD-ResNet. In 2019 IEEE 6th International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp. 89-92). IEEE [15]Li, X., Xu, Z., Shen, X., Zhou, Y., Xiao, B., & Li, T. Q. (2021). Detection of cervical cancer cells in whole slide images using deformable and global context aware faster RCNN-FPN. Current Oncology, 28(5), 3585-3601. [16]Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. [17]Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747. [18]Tensorflow. (2023). Basic Classification: Classify Images of Clothing. TensorFlow. https://www.tensorflow.org/tutorials/keras/classification [19]Warden, P., & Situnayake, D. (2019). Tinyml: Machine learning with tensorflow lite on arduino and ultra-low-power microcontrollers. O'Reilly Media. [20]Demosthenous, G., & Vassiliades, V. (2021). Continual learning on the edge with tensorflow lite. arXiv preprint arXiv:2105.01946. [21]Rovai, M. (2021, January 27). Building an Intelligent Voice Assistant from Scratch. Medium. https://medium.com/towards-data-science/building-an-intelligent-voice-assistant-from-scratch-3d5749f4af07 [22]Lin, J., Zhu, L., Chen, W. M., Wang, W. C., & Han, S. (2023). Tiny machine learning: progress and futures [feature]. IEEE Circuits and Systems Magazine, 23(3), 8-34. [23]Bagheri, M., Farshforoush, N., Bagheri, K., & Shemirani, A. I. (2023). Applications of artificial intelligence technologies in water environments: From basic techniques to novel tiny machine learning systems. Process Safety and Environmental Protection. [24]Hayajneh, A. M., Aldalahmeh, S. A., Alasali, F., Al‐Obiedollah, H., Zaidi, S. A., & McLernon, D. (2024). Tiny machine learning on the edge: A framework for transfer learning empowered unmanned aerial vehicle assisted smart farming. IET Smart Cities, 6(1), 10-26. [25]Liu, H., Wei, Z., Zhang, H., Li, B., & Zhao, C. (2022). Tiny machine learning (tiny-ml) for efficient channel estimation and signal detection. IEEE Transactions on Vehicular Technology, 71(6), 6795-6800. [26]Siang, Y. Y., Ahamd, M. R., & Abidin, M. S. Z. (2021). Anomaly detection based on tiny machine learning: A review. Open International Journal of Informatics, 9(Special Issue 2), 67-78. [27]Tsoukas, V., Boumpa, E., Giannakas, G., & Kakarountas, A. (2021, November). A review of machine learning and tinyml in healthcare. In Proceedings of the 25th Pan-Hellenic Conference on Informatics (pp. 69-73).. [28]Rahman, M. H., Rana, H. K., Peng, S., Hu, X., Chen, C., Quinn, J. M., & Moni, M. A. (2021). Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression. Briefings in Bioinformatics, 22(5), bbaa365. [29]Capogrosso, L., Cunico, F., Cheng, D. S., Fummi, F., & Cristani, M. (2024). A machine learning-oriented survey on tiny machine learning. IEEE Access. [30]Gousev, E. (2020, November). Big Opportunities for TinyML Applications: Everywhere and Always-On TinyML. TinyML Asia 2020. Online. Retrieved from https://cms.tinyml.org/wp-content/uploads/asia2020/tinyMLAsia2020d2p1-Welcome-Gousev.pdf [31]Bolanakis, D. E. (2019). A survey of research in microcontroller education. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 14(2), 50-57. [32]Gridling, G., & Weiss, B. (2007). Introduction to microcontrollers. Vienna University of Technology Institute of Computer Engineering Embedded Computing Systems Group, 25. [33]Chien, T. K., Chiou, L. Y., Sheu, S. S., Lin, J. C., Lee, C. C., Ku, T. K., ... & Wu, C. I. (2016). Low-power MCU with embedded ReRAM buffers as sensor hub for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 6(2), 247-257. [34]Zhang, Y., Li, J., Li, D., Tan, L., Yang, L., & Yu, B. (2019, October). Application Verification of Power IOT Low-power MCU in Laboratory Environment. In 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE) (pp. 1366-1369). IEEE. [35]Maier, A., Sharp, A., & Vagapov, Y. (2017, September). Comparative analysis and practical implementation of the ESP32 microcontroller module for the internet of things. In 2017 Internet Technologies and Applications (ITA) (pp. 143-148). IEEE. [36]台灣智能感測科技有限公司. (2024). ESP32-DevKitC Espressif Systems 樂鑫原廠 WROOM-32D 開發板 ESP32-D0WD 板載天線. 台灣智能感測科技有限公司. https://www.taiwansensor.com.tw/product/esp32-devkitc-espressif-systems-%e6%a8%82%e9%91%ab%e5%8e%9f%e5%bb%a0-wroom-32d-%e9%96%8b%e7%99%bc%e6%9d%bf-esp32-d0wd-%e6%9d%bf%e8%bc%89%e5%a4%a9%e7%b7%9a/ [37]Rajasundhar, D., Perumal, P., Ravaneeshwaran, J., & Ayyachamy, S. (2023, September). IoT based health monitoring system. In AIP Conference Proceedings (Vol. 2831, No. 1). AIP Publishing. [38]Al-Mashhadani, M., & Shujaa, M. (2022). IoT security using AES encryption technology based ESP32 platform. Int. Arab J. Inf. Technol., 19(2), 214-223. [39]Setiawan, F. B. (2021, October). Securing data communication through MQTT protocol with AES-256 encryption algorithm CBC mode on ESP32-based smart homes. In 2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE) (pp. 166-170). IEEE. [40]Koushal, A., Gupta, R., Jan, F., Kamaldeep, K., & Kumar, V. (2022, November). Home Automation System Using ESP32 and Firebase. In 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 228-231). IEEE. [41]Kholik, M. A., Setiawan, F. B., & Fauzi, A. (2023). Design and Implementation of A Smart Home System With The Internet of Things (IoT) Using Esp32. Inspiration: Jurnal Teknologi Informasi dan Komunikasi, 13(1), 22-30. [42]Francisco, G. C. (2022). Dispositivo IoT para monitorar indicador de pressão através de processamento de imagem (Bachelor's thesis, Universidade Federal do Rio Grande do Norte). [43]Watson, D. (2021, November 23). ESP32 MQTT. TheEngineeringProjects.Com. https://www.theengineeringprojects.com/2021/11/esp32-mqtt.html [44]Hong, C. K., Abu, M. A., Shapiai, M. I., Haniff, M. F., Mohamad, R. S., & Abu, A. (2023). Analysis of Wind Speed Prediction using Artificial Neural Network and Multiple Linear Regression Model using Tinyml on Esp32. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 107(1), 29-44. [45]Sudharsan, B., Salerno, S., & Ranjan, R. (2022, October). TinyML-CAM: 80 FPS image recognition in 1 kB RAM. In Proceedings of the 28th Annual International Conference on Mobile Computing And Networking (pp. 862-864). [46]Kareem, H., & Dunaev, D. (2021, May). The working principles of ESP32 and analytical comparison of using low-cost microcontroller modules in embedded systems design. In 2021 4th International Conference on Circuits, Systems and Simulation (ICCSS) (pp. 130-135). IEEE. [47]Macheso, P. S., & Thotho, D. (2022). ESP32 Based Electric Energy Consumption Meter. International Journal of Computer Communication and Informatics, 4(1), 23-35. [48]Lewis, P. (2020). Make a hack-proof garage door opener: A new breakout board offers cryptographic security-[hands on]. IEEE Spectrum, 57(3), 16-18. [49]Sparkfun electronics. (2019, September 26). SparkFun Edge 2 Development Board - Artemis. Sparkfun START SOMETHING. https://www.sparkfun.com/products/retired/15420 [50]Huang, B. (2015, June). SparkFun Inventor's Kit with Arduino–Curriculum Exchange. In 2015 ASEE Annual Conference & Exposition (pp. 26-1388). [51]Noak, C. J., Wang, S., Andrei, S., & Tsan, J. L. (2022, October). Introducing engineering and programming concepts to middle school and high school students using SparkFun Inventor’s Kit, Scratch, and Java. In 2022 IEEE Frontiers in Education Conference (FIE) (pp. 1-8). IEEE. [52]Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., ... & Zaharia, M. (2015). Scaling spark in the real world: performance and usability. Proceedings of the VLDB Endowment, 8(12), 1840-1843. [53]Daurai, B., Ramchiary, S. S., & Gogoi, M. (2023, March). Comparison of Sparkfun TRIAD AS7265x spectroscopy sensor device with a Spectrophotometer for qualitative and quantitative analysis. In 2023 4th International Conference on Computing and Communication Systems (I3CS) (pp. 1-3). IEEE. [54]Brock, J. D., Bruce, R. F., & Cameron, M. E. (2013). Changing the world with a Raspberry Pi. Journal of Computing Sciences in Colleges, 29(2), 151-153. [55]Raspberry pi. (2022). Raspberry Pi 4. Raspberry Pi. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ [56]Abdul Kadhar, K. M., Anand, G., Abdul Kadhar, K. M., & Anand, G. (2021). Introduction to the Raspberry Pi. Data Science with Raspberry Pi: Real-Time Applications Using a Localized Cloud, 49-78. [57]Vedavalli, P., Kondaveeti, H. K., & Ch, D. (2022, March). A Review on Automated monitoring applications of Raspberry Pi. In 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 485-492). IEEE. [58]Karthikeyan, S., Raj, R. A., Cruz, M. V., Chen, L., Vishal, J. A., & Rohith, V. S. (2023). A systematic analysis on raspberry pi prototyping: Uses, challenges, benefits, and drawbacks. IEEE Internet of Things Journal, 10(16), 14397-14417. [59]Brock, J. D., & Bruce, R. F. (2014). Sensing the world with a Raspberry pi. Journal of Computing Sciences in Colleges, 30(2), 174-175. [60]Graves, R. (2022, April 23). Minecraft 1.18.2 on the Raspberry Pi 4, ODroid N2+, and PineBook Pro. Syonyk’s Project Blog. https://www.sevarg.net/2022/04/23/aarch64-minecraft-on-the-pi-4-and-others/ [61]Yang, K., Blaauw, D., & Sylvester, D. (2017). Hardware designs for security in ultra-low-power IoT systems: An overview and survey. IEEE Micro, 37(6), 72-89. [62]Wachs, M., & Ip, D. (2015, June). Design and integration challenges of building security hardware IP. In Proceedings of the 52nd Annual Design Automation Conference (pp. 1-6). [63]Duc, A. N., Jabangwe, R., Paul, P., & Abrahamsson, P. (2017, May). Security challenges in IoT development: a software engineering perspective. In Proceedings of the XP2017 scientific workshops (pp. 1-5). [64]Rao, N. K., Avinash, N. J., Moorthy, H. R., Karthik, K., Rao, S., & Santosh, S. (2021, December). An automated robotic arm: a machine learning approach. In 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-6). IEEE. [65]Moran, M. E. (2007). Evolution of robotic arms. Journal of robotic surgery, 1(2), 103-111. [66]國泰綜合醫院. (2024, April 30). 達文西機器手臂微創手術介紹. 國泰綜合醫院. https://www.cgh.org.tw/ec99/rwd1320/category.asp?category_id=139 [67]Sharma, G., Ganesh, A. S., Kumar, S., Kharub, M., Anitha, A., & Kanwar, V. (2023, September). Substantial Capabilities of 3-Axis Robotic Arm in Industry Automation Applications. In 2023 3rd International Conference on Innovative Sustainable Computational Technologies (CISCT) (pp. 1-6). IEEE. [68]Kiefer, D., Luo, X., Reimer, A., & Evans, D. (2023, August). Robotic machining: Status, challenges and future trends. In 2023 28th International Conference on Automation and Computing (ICAC) (pp. 1-6). IEEE. [69]Yang, G. Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., ... & Wood, R. (2018). The grand challenges of science robotics. Science robotics, 3(14), eaar7650. [70]Specian, A., Mead, R., Kim, S., Matarić, M., & Yim, M. (2021). Quori: A community-informed design of a socially interactive humanoid robot. IEEE Transactions on Robotics, 38(3), 1755-1772. [71]Ockerbloom, M. M. (2020, February 19). File:Quori Socially Interactive Robot Platform IMG 20200219 165323219 02.Jpg. WIKIPEDIA. https://en.m.wikipedia.org/wiki/File:Quori_socially_interactive_robot_platform_IMG_20200219_165323219_02.jpg [72]Wiredworkers. (2019). Universal Robots UR5. Wiredworkers. https://www.wiredworkers.io/cobot/brands/universal-robots/ur5/ [73]Onrobot. (2020). RG2 - 具有寬行程的靈活 2 指機械人夾持器. Onrobot. https://onrobot.com/zh-hant/%E7%94%A2%E5%93%81/rg2-jiachiqi [74]台灣智能感測科技有限公司. (2019). Himax CMOS Imaging Camera – HM01B0 鏡頭模組. 台灣智能感測科技有限公司. https://www.taiwansensor.com.tw/product/himax-cmos-imaging-camera-hm01b0-%e9%8f%a1%e9%a0%ad%e6%a8%a1%e7%b5%84/ [75]台灣智能感測科技有限公司. (2018). HC-SR04P 超音波測距模組 HC-SR04 Plus 寬電壓 3.3-5V 輸入. 台灣智能感測科技有限公司. https://www.taiwansensor.com.tw/product/hc-sr04p-%e8%b6%85%e9%9f%b3%e6%b3%a2%e6%b8%ac%e8%b7%9d%e6%a8%a1%e7%b5%84-hc-sr04-plus-%e5%af%ac%e9%9b%bb%e5%a3%93-3-3-5v-%e8%bc%b8%e5%85%a5/ [76]TensorFlow Models. (2024). TensorFlow Model Garden: Object Detection Zoo [Documentation]. GitHub. Retrieved July 15, 2024, from https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
|