|
[1]M. Rooney, P. J. Biermann, B. G. Carkhuff, D. R. Shires, and R. V. Mohan, “Development of in-process RTM sensors for thick composite sections,” Proceedings of the American Control Conference, vol. 6, pp. 3875–3878, 1998, doi: 10.1109/ACC.1998.703374. [2]S. Bickerton, H. C. Stadtfeld, K. V. Steiner, and S. G. Advani, “Design and application of actively controlled injection schemes for resin-transfer molding,” Compos Sci Technol, vol. 61, no. 11, pp. 1625–1637, Aug. 2001, doi: 10.1016/S0266-3538(01)00064-1. [3]J. M. Lawrence et al., “An approach to couple mold design and on-line control to manufacture complex composite parts by resin transfer molding,” Compos Part A Appl Sci Manuf, vol. 33, no. 7, pp. 981–990, Jul. 2002, doi: 10.1016/S1359-835X(02)00043-X. [4]M. Devillard, K. T. Hsiao, A. Gokce, and S. G. Advani, “On-Line Characterization of Bulk Permeability and Race-Tracking During the Filling Stage in Resin Transfer Molding Process,” http://dx.doi.org/10.1177/0021998303034459, vol. 37, no. 17, pp. 1525–1541, Sep. 2003, doi: 10.1177/0021998303034459. [5]M. Devillard, K. T. Hsiao, and S. G. Advani, “Flow sensing and control strategies to address race-tracking disturbances in resin transfer molding—part II: automation and validation,” Compos Part A Appl Sci Manuf, vol. 36, no. 11, pp. 1581–1589, Nov. 2005, doi: 10.1016/J.COMPOSITESA.2004.04.009. [6]K. T. Hsiao and S. G. Advani, “Flow sensing and control strategies to address race-tracking disturbances in resin transfer molding. Part I: design and algorithm development,” Compos Part A Appl Sci Manuf, vol. 35, no. 10, pp. 1149–1159, Oct. 2004, doi: 10.1016/J.COMPOSITESA.2004.03.010. [7]S. Kobayashi, R. Matsuzaki, and A. Todoroki, “Multipoint cure monitoring of CFRP laminates using a flexible matrix sensor,” Compos Sci Technol, vol. 69, no. 3–4, pp. 378–384, Mar. 2009, doi: 10.1016/J.COMPSCITECH.2008.10.029. [8]R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, “Control of resin flow/temperature using multifunctional interdigital electrode array film during a VaRTM process,” Compos Part A Appl Sci Manuf, vol. 42, no. 7, pp. 782–793, Jul. 2011, doi: 10.1016/J.COMPOSITESA.2011.03.004. [9]R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, “Full-field monitoring of resin flow using an area-sensor array in a VaRTM process,” Compos Part A Appl Sci Manuf, vol. 42, no. 5, pp. 550–559, May 2011, doi: 10.1016/J.COMPOSITESA.2011.01.014. [10]R. Matsuzaki, S. Kobayashi, A. Todoroki, and Y. Mizutani, “Flow control by progressive forecasting using numerical simulation during vacuum-assisted resin transfer molding,” Compos Part A Appl Sci Manuf, vol. 45, pp. 79–87, Feb. 2013, doi: 10.1016/J.COMPOSITESA.2012.09.014. [11]G. Tuncol, M. Danisman, A. Kaynar, and E. M. Sozer, “Constraints on monitoring resin flow in the resin transfer molding (RTM) process by using thermocouple sensors,” Compos Part A Appl Sci Manuf, vol. 38, no. 5, pp. 1363–1386, May 2007, doi: 10.1016/J.COMPOSITESA.2006.10.009. [12]P. Wang, J. Molimard, S. Drapier, A. Vautrin, and J. C. Minni, “Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors,” J Compos Mater, vol. 46, no. 6, pp. 691–706, Mar. 2012, doi: 10.1177/0021998311410479/ASSET/IMAGES/LARGE/10.1177_0021998311410479-FIG17.JPEG. [13]L. Khoun, R. De Oliveira, V. Michaud, and P. Hubert, “Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites,” Compos Part A Appl Sci Manuf, vol. 42, no. 3, pp. 274–282, Mar. 2011, doi: 10.1016/J.COMPOSITESA.2010.11.013. [14]E. Schmachtenberg, J. Schulte Zur Heide, and J. Töpker, “Application of ultrasonics for the process control of Resin Transfer Moulding (RTM),” Polym Test, vol. 24, no. 3, pp. 330–338, May 2005, doi: 10.1016/J.POLYMERTESTING.2004.11.002. [15]J. M. Jeong et al., “In-situ resin flow monitoring in VaRTM process by using optical frequency domain reflectometry and long-gauge FBG sensors,” Compos Struct, vol. 282, p. 115034, Feb. 2022, doi: 10.1016/J.COMPSTRUCT.2021.115034. [16]J. Mendikute, J. Plazaola, M. Baskaran, E. Zugasti, L. Aretxabaleta, and J. Aurrekoetxea, “Impregnation quality diagnosis in Resin Transfer Moulding by machine learning,” Compos B Eng, vol. 221, p. 108973, Sep. 2021, doi: 10.1016/J.COMPOSITESB.2021.108973. [17]R. Matsuzaki, M. Morikawa, Y. Oikawa, and K. Ushiyama, “Predicting thickness impregnation in a VaRTM resin flow simulation using machine learning,” Composites Part C: Open Access, vol. 5, p. 100158, Jul. 2021, doi: 10.1016/J.JCOMC.2021.100158. [18]S. Vanini, F. Faraci, A. Ferrari, and S. Giordano, “Using barometric pressure data to recognize vertical displacement activities on smartphones,” Comput Commun, vol. 87, pp. 37–48, Aug. 2016, doi: 10.1016/J.COMCOM.2016.02.011. [19]G. Şengül, M. Karakaya, S. Misra, O. O. Abayomi-Alli, and R. Damaševičius, “Deep learning based fall detection using smartwatches for healthcare applications,” Biomed Signal Process Control, vol. 71, p. 103242, Jan. 2022, doi: 10.1016/J.BSPC.2021.103242. [20]J. A. Almazán-Lázaro, E. López-Alba, and F. A. Díaz-Garrido, “Improving Composite Tensile Properties during Resin Infusion Based on a Computer Vision Flow-Control Approach,” Materials 2018, Vol. 11, Page 2469, vol. 11, no. 12, p. 2469, Dec. 2018, doi: 10.3390/MA11122469. [21]J. A. Almazán-Lázaro, E. López-Alba, and F. A. Díaz-Garrido, “Applied computer vision for composite material manufacturing by optimizing the impregnation velocity: An experimental approach,” J Manuf Process, vol. 74, pp. 52–62, Feb. 2022, doi: 10.1016/J.JMAPRO.2021.11.063. [22]J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities.,” Proceedings of the National Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, Apr. 1982, doi: 10.1073/PNAS.79.8.2554. [23]D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature 1986 323:6088, vol. 323, no. 6088, pp. 533–536, 1986, doi: 10.1038/323533a0. [24]Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Comput, vol. 1, no. 4, pp. 541–551, Dec. 1989, doi: 10.1162/neco.1989.1.4.541. [25]J.Schmidhuber, Habilitation thesis: System modeling and optimization. 1993. [Online]. Available: Page 150 ff demonstrates credit assignment across the equivalent of 1,200 layers in an unfolded RNN. [26]S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/NECO.1997.9.8.1735. [27]F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with lstm recurrent networks,” The Journal of Machine Learning Research, vol. 3, no. 1, pp. 115–143, Mar. 2003, doi: 10.1162/153244303768966139. [28]S. Fernández, A. Graves, and J. Schmidhuber, “An application of recurrent neural networks to discriminative keyword spotting,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4669 LNCS, no. PART 2, pp. 220–229, 2007, doi: 10.1007/978-3-540-74695-9_23/COVER. [29]Y. Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” Sep. 2016, Accessed: May 02, 2023. [Online]. Available: https://arxiv.org/abs/1609.08144v2 [30]D. Wang, X. Wang, and S. Lv, “An Overview of End-to-End Automatic Speech Recognition,” Symmetry 2019, Vol. 11, Page 1018, vol. 11, no. 8, p. 1018, Aug. 2019, doi: 10.3390/SYM11081018. [31]M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint Language and Translation Modeling with Recurrent Neural Networks.” pp. 1044–1054, 2013. Accessed: May 02, 2023. [Online]. Available: https://aclanthology.org/D13-1106 [32]I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” Adv Neural Inf Process Syst, vol. 4, no. January, pp. 3104–3112, Sep. 2014, Accessed: May 02, 2023. [Online]. Available: https://arxiv.org/abs/1409.3215v3 [33]R. Lou, W. Wang, X. Li, Y. Zheng, and Z. Lv, “Prediction of Ocean Wave Height Suitable for Ship Autopilot,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 25557–25566, Dec. 2022, doi: 10.1109/TITS.2021.3067040. [34]Y. Zhang, X. Shi, S. Zhang, and A. Abraham, “A XGBoost-Based Lane Change Prediction on Time Series Data Using Feature Engineering for Autopilot Vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 19187–19200, Oct. 2022, doi: 10.1109/TITS.2022.3170628. [35]H. Wang et al., “Risk Assessment and Mitigation in Local Path Planning for Autonomous Vehicles With LSTM Based Predictive Model,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 2738–2749, Oct. 2022, doi: 10.1109/TASE.2021.3075773. [36]D. H. (Dana H. Ballard and C. M. Brown, Computer vision. Prentice-Hall, 1982. [37]Y. Chen, J. Yang, and J. Qian, “Recurrent neural network for facial landmark detection,” Neurocomputing, vol. 219, pp. 26–38, Jan. 2017, doi: 10.1016/J.NEUCOM.2016.09.015. [38]L. Shao, Z. Cai, L. Liu, and K. Lu, “Performance evaluation of deep feature learning for RGB-D image/video classification,” Inf Sci (N Y), vol. 385–386, pp. 266–283, Apr. 2017, doi: 10.1016/J.INS.2017.01.013. [39]A. I. Aviles, S. M. Alsaleh, J. K. Hahn, and A. Casals, “Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised Neuro-Recurrent-Vision Approach,” IEEE Trans Haptics, vol. 10, no. 3, pp. 431–443, Jul. 2017, doi: 10.1109/TOH.2016.2640289. [40]W. K. Lee, C. F. Leong, W. K. Lai, L. K. Leow, and T. H. Yap, “ArchCam: Real time expert system for suspicious behaviour detection in ATM site,” Expert Syst Appl, vol. 109, pp. 12–24, Nov. 2018, doi: 10.1016/J.ESWA.2018.05.014. [41]S. R. Dinesh Jackson et al., “Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM,” Computer Networks, vol. 151, pp. 191–200, Mar. 2019, doi: 10.1016/J.COMNET.2019.01.028. [42]D. Avola, M. Bernardi, L. Cinque, G. L. Foresti, and C. Massaroni, “Exploiting Recurrent Neural Networks and Leap Motion Controller for the Recognition of Sign Language and Semaphoric Hand Gestures,” IEEE Trans Multimedia, vol. 21, no. 1, pp. 234–245, Jan. 2019, doi: 10.1109/TMM.2018.2856094. [43]Henry. Darcy, “Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau... un appendice relatif aux fournitures d’eau de plusieurs villes au filtrage des eaux.,” 1856. [44]“Long Short-Term Memory Neural Networks - MATLAB & Simulink.” https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html (accessed May 27, 2023).
|